

32 X 100 **OLED/PLED Driver with Controller** For 20*4 Characters and 32*100 Dot Matrix

PRELIMINARY

Features

- Single Chip PMOLED drivers
- 32 Common drivers
- 100 Segment drivers
- Maximum display dimensions
 - 16 characters * 1 lines
 - 20 characters * 1 lines

 - 20 characters * 2 lines
 40 characters * 1 lines (Cascade Application)
 - 40 characters * 2 lines (Cascade Application)
 - 16 characters * 4 lines
 - 20 characters * 4 lines
 - 100 * 32 dot matrix
- Support Graphic mode
- Support Cascade application
- Versatile display functions provided on chip: - Display Clear, Cursor Home, Display ON/OFF,
- Cursor ON/OFF, Character Blinking, Cursor Shift
- Display Shift
- Multiplexing duty factors, selected by register
 - Graphic mode: 1/1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/16, 1/32
- Character mode: 1/8, 1/11, 1/16, 1/22, 1/32
- Character Displays Data RAM (DDRAM): 80 X 8 bits
- Graphic Displays Data RAM (GDDRAM): 100*32bits
- Character Generator RAM (CGRAM): 64 X 8 bits 8 character (5*8 dot) or 4 character (5*10 dot)
- Supply 4 set Character Generator ROM (CGROM):
- CGROM Size: 4 sets, 256 characters, 5*10 dot patterns
- English Japanese Character
- English Russian Character
- Western European character-1
- Western European character-2

- High speed 4/8-bit 6800, 8080 Parallel Interface, up to 2MHz
- 3-wire & 4-wire Serial Peripheral Interface
- 400KHz fast I²C bus interface
- Maximum segment output current: 600µA
- Maximum common sink current: 60mA
- Build-in power on reset function
- Operating voltage:
- Logic voltage supply: VDD1 = 2.2V 3.5V or VDD1=3.5~5.5V (Pad option) DC-DC voltage supply: VDD2 = 2.7V – 5.5V
- OLED Operating voltage supply:
- External VPP supply = 5.0V 14.0V - Internal Charge pump for VPP generator = 6.4V, 8.0V,
- 9.0V, 12.0V (select by register)
- Programmable Internal Charge pump mode: 2 X VDD2 or 3 X VDD2 (select by register)
- Vertical scrolling in graphic mode
- Adjustable Pre-charge with register
- Adjustable Panel Brightness with 8 bit register
- Adjustable Cursor Blinking Duty with register
- Programmable frame frequency and multiplexing ratio
- On-chip oscillator
- Automatic Power On Reset Circuit
- Low power consumption
- Sleep mode: < 10µA
- Wide range of operating temperatures: -40 to +85°C
- Available in COG form, thickness: 300mm

General Description

SH1111 is an OLED Driver/Controller IC utilizing CMOS Technology specially designed to display alphanumeric and Japanese kana characters as well as symbols and graphics. It can interface with either 4/8 bit 6800-Parallel Interface, 4/8 bit 8080-Parallel Interface, 3/4 bit SPI Serial Interface and IIC Microprocessor and display up to one 20-character line, two 20-character lines, one 40-character lines, two 40-character lines, four 20-character lines or 100*32 dot matrix.

SH1111 embeds with contrast control, Display RAM oscillator, build-in Character Generator ROM and efficient DC-DC converter. Since all the functions such as Display Clear, Cursor Home, Display ON/OFF, Cursor ON/OFF, Display Character Blink, Cursor Shift, Display Shift are all incorporated into a single chip, a minimal system which having the highest performance and reliability can be interfaced with this OLED driver. Pin assignments and application circuits are optimized for easy PCB layout and cost saving advantages.

Block Diagram

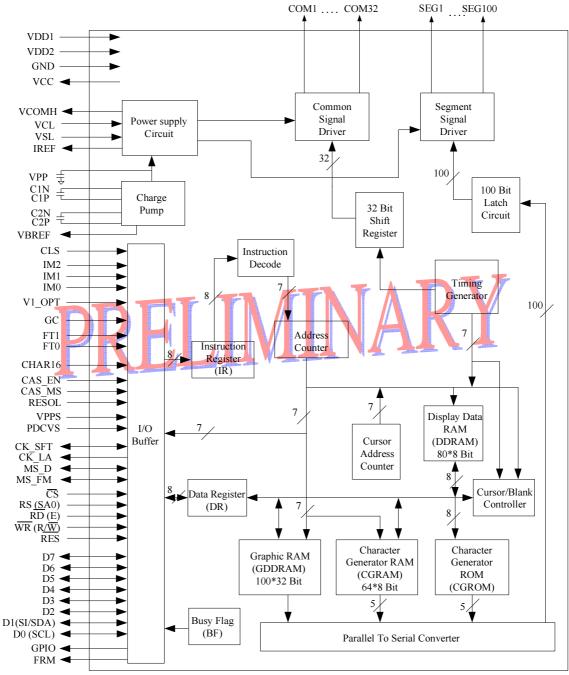


Figure.1 SH1111 Block Diagram

Pad Description

Power Supply

Pad No.	Symbol	I/O	Description
44,45,46,53	Vdd1	Supply	2.2 ~ 3.5V or 3.5 ~ 5.5V power supply input pad for logic.
18,19,20,21	Vdd2	Supply	2.7 ~ 5.5V power supply pad for Power supply for charge pump circuit. This pin should be disconnected when VPP is supplied externally.
41,42,43	41,42,43 Vcc O		Logic power output pad: When VDD1 = 2.2~3.5V, VCC output voltage VDD1. When VDD1 = 3.5~5.5V, VCC output voltage 2.8V. A capacitor should be connected between this pad and GND.
30~33,68,82,93	GND	Supply	Ground
38,39 VsL Supply		Supply	This is a segment voltage reference pad This pad should be connected to GND externally
34,35,36,37 VcL Supply			This is a common voltage reference pad This pad should be connected to GND externally

OLED Driver Supplies

Pad No.	Symbol	I/O	Description						
22	IREF		This is a segment current reference pad A resistor should be connected between this pad and GND. Set the current at 37.5μA						
23,24,25	Vсомн	0	This is a pad for the voltage output high level for common signals A capacitor should be connected between this pad and GND						
40	VBREF	0	This is an internal voltage reference pad for booster circuit						
26,27,28,29	Vpp	Р	OLED panel power supply. Generated by internal charge pump.						
2~5	C1N,	Р	Connect to charge pump capacitor.						
6~9	C1P		These pins are not used and should be disconnected when Vpp is supplied externally.						
10~13	C2P,	Р	Connect to charge pump capacitor.						
14~17	C2N	1	These pins are not used and should be disconnected when Vpp is supplied externally.						

System Pad Option Pads

Pad No.	Symbol	I/O		Description										
54	CLS	I	CLS = "H": CLS = "L":	his is the internal clock enable pad. In Master Mode LS = "H": Internal oscillator circuit is enabled. LS = "L": Internal oscillator circuit is disabled (requires external input). Then CLS = "L", an external clock source must be connected to the CL pad for normal operation.										
55 56 57	IMO IM1 IM2	I	These are IM2 0 0 0 1 1 1 1	the MPU ir IM1 0 1 1 0 0 1 1 1	nterface n IMO 0 1 0 1 0 1 0 1 0	MPU Interface 8-bit 6800 8-bit 8080 4-wire SPI IIC 4-bit 6800 4-bit 8080 3-wire SPI IIC								
58	V1_OPT	I	V1_OPT =	nis is the V1 supply voltage select pad. 1_OPT = "H": Power should supply "3.5~5.5V" to VDD1. 1_OPT = "L": Power should supply "2.2~3.5V" to VDD1.										

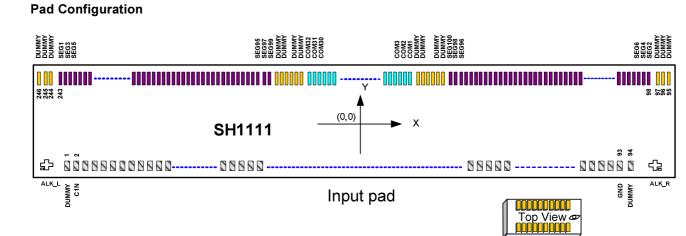
1			This bit is used to	a salact the dian	ay mode for further proce							
					•	:00.						
59	GC				IODE will be selected.							
			When $G/C = "L"$,	the CHARACTE	R MODE will be selected							
			Font Table Selec	ction. These two l	bits are used to select on	e font table out of the for	ur for further					
			process.									
00	FTO		FT1 FT0 Font Table									
60 61	FT0 FT1	Т	0 0		I_JAPANESE CHARACT							
01	ГП				N EUROPEAN CHARAC							
			· · · · ·		LRUSSIAN CHARACTE							
			1	1 WESTER	N EUROPEAN CHARAC	TER FONT TABLE-II						
			Cascade Mode (Open / Close:								
62	CAS EN	1	CAS_EN = "H", C	Cascade Mode O	pen. SH1111 is used as c	ascade mode, and the u	ser can select					
02	CAS_EN	1	SH1111 as Mast									
		<u> </u>	CAS_EN = "L", C	Cascade Mode Cl	ose, SH1111 is used as	a single chip.						
			SH1111 used as									
63	CAS_MS		CAS_MS = "H", 3	SH1111 used as	Master Mode.							
			CAS_MS = "L", S	SH1111 used as	Slave Mode.							
			Display Resolution									
64	RESOL	I	RESOL = "H", th	e display resoluti	on of SH1111 is 20 chara	cters * 4 line (COM outp	out 1/32 duty).					
					on of SH1111 is 20 chara	cters * 2 line (COM outp	out 1/16 duty).					
					al pump open or close.							
65	VPPS			VPPS = "H", Internal Charge pump for VPP generator open, user can use internal charge pump to generate VPP.								
			VPPS = "L", Internal Charge pump for VPP generator close, requires external VPP.									
					ecial application 16 chara							
			CHAR16 = 0. sp	ecial application	16 character *1 line and 1	6 character * 4 line disa	ble.					
	affilie				16 character *1 line and 1							
66	CHAR16	1	CHAR16	RESOL	Display Dimensions	SEG]					
			0	*	Normal Display	SEG1~SEG100						
			1	0	16 character $ imes$ 1 line	SEG1~SEG80						
			1	1	16 character $ imes$ 4 line	SEG1~SEG80						
			This had is used	to set the defeut	t value of Pre-Charge/Dis	Charge Contract VCC	мн					
			PVDS Value	Parameters	Default value	Parameter						
				Pre-Charge	FH	15DCLKS	1					
				Dis-Charge	FH	15DCLKS	1					
		Ι.	PDCVS = "H"	Contrast	FFH		1					
67	PDCVS			VCOMH	40H	VPP	1					
				Pre-Charge	2H	2DCLKS						
			PDCVS = "L"	Dis-Charge	2H	2DCLKS						
			1 DCV3 - L	Contrast	80H							
				VCOMH	35H	0.770×VPP						
							1					

System Bus Connection Pads

Pad No.	Symbol	I/O	Description
50	CL	I/O	This pad is the system clock input. When internal clock is enabled, this pad should be Left open. The internal clock is output from this pad. When internal oscillator is disabled, this pad receives display clock signal from external clock source.
69,70,71	CK_SFT	I/O	Character pattern data shift clock , only used in cascade application When "Master" mode, CK_SFT is output When "slave" mode, CK_SFT is input When the chip is used in single mode, CK_SFT must be floating.
72,73	CK_LA	0	CK_LA output GND.
74,75,76	MS_D	I/O	Character Pattern Data Pin, only used in cascade application When "master" mode, MS_D is output When "slave" mode, MS_D is input When the chip is used in single mode, MS_D must be floating.
77,78	MS_FM	I/O	Master/Slaver connect for synchronism, only used in cascade application When "master" mode, MS_FM is output When "slave" mode, MS_FM is input When the chip is used in single mode, MS_FM output GND. MS_FM must be floating.
79	CS		This pad is the chip select input. When $\overline{CS} = "L"$, then the chip select becomes active, and data/command I/O is enabled.
80	RES		This is a reset signal input pad. When RES is set to "L", the settings are initialized. The reset operation is performed by the RES signal level.
81	RS	I	This is the Data/Command control pad that determines whether the data bits are data or a command. RS = "H": the inputs at D0 to D7 are treated as display data. RS = "L": the inputs at D0 to D7 are transferred to the command registers. In IIC interface, this pad serves as SA0 to distinguish the different address of OLED driver.
83	\overline{WR} (R/ \overline{W})	I	This is a MPU interface input pad. When connected to an 8080 MPU, this is active LOW. This pad connects to the 8080 MPU \overline{WR} signal. The signals on the data bus are latched at the rising edge of the \overline{WR} signal. When connected to a 6800 Series MPU: This is the read/write control signal input terminal. When $R/\overline{W} = $ "H": Read. When $R/\overline{W} = $ "L": Write.
84	RD (E)	I	This is a MPU interface input pad. When connected to an 8080 series MPU, it is active LOW. This pad is connected to the $\overline{\text{RD}}$ signal of the 8080 series MPU, and the SH1111 data bus is in an output status when this signal is "L". When connected to a 6800 series MPU, this is active HIGH. This is used as an enable clock input of the 6800 series MPU.
85 86 87,88 89~92	D0(SCL) D1(SI/SDA) D2– D3 D4 – D7	I/O	When 8-bit bus mode, D0-D7 are used as bi-directional data bus that connects to an 8-bit MPU data bus. When 4-bit bus mode, D4-D7 are used as bi-directional data bus that connects to a 4-bit MPU data bus. And in this case D0-D3 pins are not used and set to HZ. When the serial interface is select, then D1 serves as the serial data input terminal (SI/SDA) and D0 serves as the serial clock input terminal (SCL). At this time, D7 to D2 are set to HZ. When the chip select is inactive, D0 to D7 are set to HZ.
51	FRM	0	This pad is No Connection pad. Its signal varies with the frame frequency. Its voltage is equal to VDD1 when the last common output of every frame is active, and is equal to GND during other time.

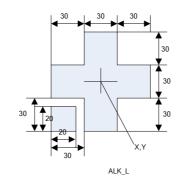
52	GPIO	0	This pad is used to indicate the Display ON/OFF status. When Display On, this pad output voltage VDD1. When Display Off, this pad output voltage GND.
----	------	---	---

OLED Drive Pads

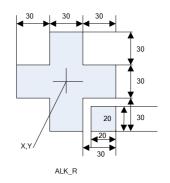

Pad No.	Symbol	I/O	Description
154~169,172~187	COM1 - 32	0	These pads are Common signal output for OLED display.
98~147,194~243	SEG1 - 100	0	These pads are Segment signal output for OLED display.

Test Pads

Pad No.	Pad No. Symbol I/O Description									
47	Test1	0	Test pads, internal pull low, no connection for user.							
48	Test2	0	Test pads, no connection for user.							
49	Test3	O Test pads, no connection for user.								
1,94~97,148~153, 170~171,188~193 244~246	Dummy	-	Dummy pads, no connection for user.							



Chip Outline Dimensions


Item	Pad No.	Size	(µm)
		X	Y
Chip boundary		5444	868
Chip height	All pads	3	00
	VO	40	80
Bump size	SEG	15	110
	СОМ	15	110
	СОМ	4	16
Pad pitch	SEG	30	.75
	I/O	Ę	55
Bump height	All pads	9:	±2

Alignment Mark Location

NO	Х	Y
ALK_L	-2616.01	220
ALK_R	2616.01	220

Pad location (Total: 242 pads)

Pad No.	Designation	х	Y	Pad No.	Designation	x	Y	Pad No.	Designation	х	Y	Pad No	Designation	х	Y
1	DUMMY	-2600.5	-353	69	CK SFT	1225.5	-353	137	SEG80	1342.75	335	205	SEG77	-1373.5	335
2	C1N	-2545.5	-353	70	CK_SFT	1280.5	-353	138	SEG82	1312	335	206	SEG75	-1404.25	335
3	C1N	-2490.5	-353	71	CK_SFT	1335.5	-353	139	SEG84	1281.25	335	207	SEG73	-1435	335
4	C1N	-2435.5	-353	72	CK_LA	1390.5	-353	140	SEG86	1250.5	335	208	SEG71	-1465.75	335
5	C1N	-2380.5	-353	73	CK_LA	1445.5	-353	141	SEG88	1219.75	335	209	SEG69	-1496.5	335
6 7	C1P	-2325.5	-353	74	MS_D	1500.5 1555.5	-353 -353	142	SEG90	1189	335	210	SEG67	-1527.25 -1558	335 335
8	C1P C1P	-2270.5 -2215.5	-353 -353	75 76	MS_D MS_D	1610.5	-353	143 144	SEG92 SEG94	1158.25 1127.5	335 335	211 212	SEG65 SEG63	-1588.75	335
9	C1P	-2160.5	-353	77	MS_FM	1665.5	-353	145	SEG96	1096.75	335	212	SEG61	-1619.5	335
10	C2P	-2105.5	-353	78	MS_FM	1720.5	-353	146	SEG98	1066	335	214	SEG59	-1650.25	335
11	C2P	-2050.5	-353	79	CSB	1775.5	-353	147	SEG100	1035.25	335	215	SEG57	-1681	335
12	C2P	-1995.5	-353	80	RESB	1830.5	-353	148	DUMMY	1004.5	335	216	SEG55	-1711.75	335
13	C2P	-1940.5	-353	81	RS	1885.5	-353	149	DUMMY	973.75	335	217	SEG53	-1742.5	335
14	C2N	-1885.5	-353	82	GND	1940.5	-353	150	DUMMY	943	335	218	SEG51	-1773.25 -1804	335 335
15	C2N	-1830.5	-353	83	WRB	1995.5 2050.5	-353 -353	151 152	DUMMY	897	335 335	219 220	SEG49 SEG47	-1804	335
16 17	C2N C2N	-1775.5 -1720.5	-353 -353	84 85	RDB D0	2105.5	-353	152	DUMMY DUMMY	851 805	335	220	SEG47 SEG45	-1865.5	335
18	VDD2	-1665.5	-353	86	D1	2160.5	-353	154	COM1	759	335	222	SEG43	-1896.25	335
19	VDD2	-1610.5	-353	87	D2	2215.5	-353	155	COM2	713	335	223	SEG41	-1927	335
20	VDD2	-1555.5	-353	88	D3	2270.5	-353	156	COM3	667	335	224	SEG39	-1957.75	335
21	VDD2	-1500.5	-353	89	D4	2325.5	-353	157	COM4	621	335	225	SEG37	-1988.5	335
22	IREF	-1445.5	-353	90	D5	2380.5	-353	158	COM5	575	335	226	SEG35	-2019.25	335
23	VCOMH	-1390.5	-353	91	D6	2435.5	-353	159	COM6	529	335	227	SEG33	-2050	335
24 25	VCOMH	-1335.5	-353	92	D7 GND	2490.5 2545.5	-353	160	COM7	483	335	228 229	SEG31	-2080.75 -2111.5	335 335
25	VCOMH VPP	-1280.5 -1225.5	-353 -353	93 94		2600.5	-353	161 162	COM8 COM9	437 391	335	229	SEG29	-2142.25	335
20	VPP	-1170.5	-353	95	DUMMY	2634.25	335	163	COM10	345	335	231	SEG25	-2173	335
28	VPP	-1115.5	-353	96	DUMMY	2603.5	335	164	COM11	299	335	232	SE <mark>G2</mark> 3	-2203.75	335
29	VPP	-106 <mark>0.5</mark>	-353	97	DUMMY	2572.75	335	165	COM12	253	335	233	SEG21	-2234.5	335
30	GND	-100 <mark>5.5</mark>	-35 <mark>3</mark>	98	SEG2	2542	335	166	COM13	207	335	234	SEG19	-2265.25	335
31	GND	-950 <mark>.5</mark>	-353	99	SEG4	2511.25	335	167	COM14	161	335	235	SEG17	-2296	335
32	GND	-895.5	-353	100	SEG6	2480.5	335	168	COM15	115	335	236	SEG15	-2326.75	335
33	GND	-840.5	-353	101	SEG8	2449.75 2419	335 335	169	COM16	69	335	237	SEG13	-2357.5 -2388.25	335 335
34 35	VCL VCL	-785.5 -730.5	-353 -353	102 103	SEG10 SEG12	2388.25	335	170 171	DUMMY DUMMY	23 -23	335 335	238 239	SEG11 SEG9	-2388.23	335
35	VCL	-675.5	-353	103	SEG12 SEG14	2357.5	335	171	COM17	-23	335	239	SEG9 SEG7	-2449.75	335
37	VCL	-620.5	-353	105	SEG16	2326.75	335	173	COM18	-115	335	241	SEG5	-2480.5	335
38	VSL	-565.5	-353	106	SEG18	2296	335	174	COM19	-161	335	242	SEG3	-2511.25	335
39	VSL	-510.5	-353	107	SEG20	2265.25	335	175	COM20	-207	335	243	SEG1	-2542	335
40	VBREF	-455.5	-353	108	SEG22	2234.5	335	176	COM21	-253	335	244	DUMMY	-2572.75	335
41	VCC	-400.5	-353	109	SEG24	2203.75	335	177	COM22	-299	335	245	DUMMY	-2603.5	335
42 43	VCC VCC	-345.5 -290.5	-353	110	SEG26	2173 2142.25	335 335	178 179	COM23	-345 -391	335 335	246	DUMMY	-2634.25	335
43	VCC VDD1	-290.5	-353 -353	111 112	SEG28 SEG30	2142.25	335	179	COM24 COM25	-391	335				
45	VDD1	-180.5	-353	112	SEG32	2080.75	335	180	COM26	-483	335				
46	VDD1	-125.5	-353	114	SEG34	2050	335	182	COM27	-529	335				
47	TEST1	-70.5	-353	115	SEG36	2019.25	335	183	COM28	-575	335				
48	TEST2	70.5	-353	116	SEG38	1988.5	335	184	COM29	-621	335				
49	TEST3	125.5	-353	117	SEG40	1957.75	335	185	COM30	-667	335				
50	CL	180.5	-353	118	SEG42	1927	335	186	COM31	-713	335				
51 52	FRM GPIO	235.5 290.5	-353 -353	119 120	SEG44 SEG46	1896.25 1865.5	335 335	187 188	COM32 DUMMY	-759 -805	335 335	┣───			
52	VDD1	290.5	-353	120	SEG46 SEG48	1834.75	335	188	DUMMY	-805 -851	335				
54	CLS	400.5	-353	121	SEG48 SEG50	1804	335	189	DUMMY	-897	335		1		
55	IM0	455.5	-353	123	SEG52	1773.25	335	191	DUMMY	-943	335				
56	IM1	510.5	-353	124	SEG54	1742.5	335	192	DUMMY	-973.75	335				
57	IM2	565.5	-353	125	SEG56	1711.75	335	193	DUMMY	-1004.5	335				
58	V1_OPT	620.5	-353	126	SEG58	1681	335	194	SEG99	-1035.25	335				ļ
59	GC	675.5	-353	127	SEG60	1650.25	335	195	SEG97	-1066	335				
60	FT0	730.5	-353	128	SEG62	1619.5	335	196	SEG95	-1096.75	335				┝───┦
61 62	FT1 CAS_EN	785.5 840.5	-353 -353	129 130	SEG64 SEG66	1588.75 1558	335 335	197 198	SEG93 SEG91	-1127.5 -1158.25	335 335				
62	CAS_EN CAS_MS	840.5	-353 -353	130	SEG66	1527.25	335	198	SEG91 SEG89	-1158.25	335				
64	RESOL	950.5	-353	131	SEG08	1496.5	335	200	SEG87	-1219.75	335				
65	VPPS	1005.5	-353	133	SEG72	1465.75	335	200	SEG85	-1250.5	335		Ì	1	
66	CHAR16	1060.5	-353	134	SEG74	1435	335	202	SEG83	-1281.25	335				
67	PDCVS	1115.5	-353	135	SEG76	1404.25	335	203	SEG81	-1312	335				
68	GND	1170.5	-353	136	SEG78	1373.5	335	204	SEG79	-1342.75	335				

Functional Description

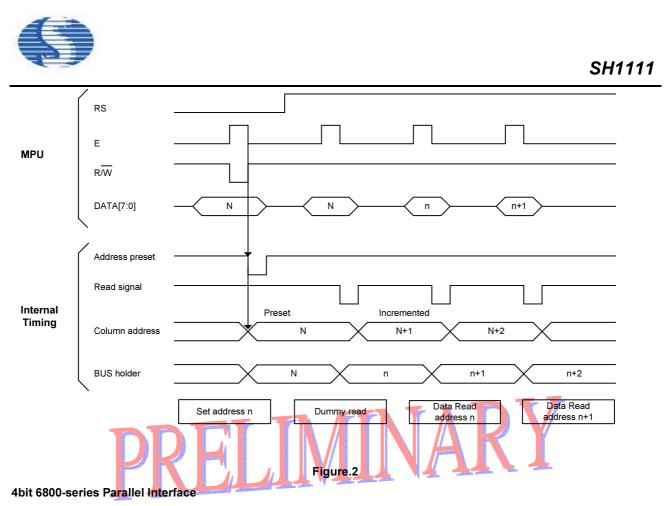
Microprocessor Interface Selection

The 4/8 bit 8080-Parallel Interface, 4/8 bit 6800-Parallel Interface, 3-wire Serial Interface (SPI), 4-wire Serial Interface (SPI) or I^2C Interface can be selected by different selections of IM2~0 as shown in Table 1.

	Table. 1																
			Interface				Data	signal				Control signal					
IM2	IM1	IM0	interface	D7	D6	D5	D4	D3	D2	D1	D0	E/RD	WR	CS	RS	RES	
0	0	0	8-bit 6800	D7	D6	D5	D4	D3	D2	D1	D0	Е	R / \overline{W}	CS	RS	RES	
0	0	1	8-bit 8080	D7	D6	D5	D4	D3	D2	D1	D0	RD	WR	CS	RS	RES	
0	1	0	4-wire SPI			Hz(N	lote1)			SI	SCL	Pull High or Low		cs	RS	RES	
0	1	1	IIC			Hz(N	ote1)			SDA	SCL		ligh or w	Pull Low	SA0	RES	
1	0	0	4-bit 6800	D7	D6	D5	D4		Hz(N	lote2)		Е	R/\overline{W}	CS	RS	RES	
1	0	1	4-bit 8080	D7	D6	D5	D4		Hz(N	lote2)		RD	WR	CS	RS	RES	
1	1	0	3-wire SPI		Hz(Note1) SI SCL								ligh or w	cs	Pull Low	RES	
1	1	1	IIC			Hz(N	ote1)			SDA	SCL	Pull H	ligh or W	Pull	SA0	RES	

Note1: When 3-wire Serial Interface (SPI), 4-wire Serial Interface (SPI) or IIC Interface is selected, D7~D2 is Hz. D7~ D2 is recommended to connect the VDD1 or GND. It is also allowed to leave D7~ D2 unconnected.

Note2: When 4/8 bit 6800-Parallel Interface or 4/8 bit 8080-Parallel Interface is selected, D3~D0 is Hz. D3~ D0 is recommended to connect the VDD1 or GND. It is also allowed to leave D3~ D0 unconnected.


8bit 6800-series Parallel Interface

The parallel interface consists of 8 bi-directional data pads (D7-D0), $\overline{WR} (R/\overline{W})$, $\overline{RD} (E)$, RS and \overline{CS} . When $\overline{WR} (R/\overline{W}) =$ "H", read operation from the display RAM or the status register occurs. When $\overline{WR} (R/\overline{W}) =$ "L", Write operation to display data RAM or internal command registers occurs, depending on the status of A0 input. The $\overline{RD} (E)$ input serves as data latch signal (clock) when it is "H", provided that $\overline{CS} =$ "L" as shown in Table.

Table. 2	
----------	--

IM2	IM1	IM0	Туре	cs	RS	RD	WR	D7 to D0
0	0	0	8 bit 6800 microprocessor bus	cs	RS	E	R/\overline{W}	D7 to D0

In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing are internally performed, which require the insertion of a dummy read before the first actual display data read. This is shown in Figure. Below.

The parallel interface consists of 4 bi-directional data pads (D7~D4), \overline{WR} (R/ \overline{W}), \overline{RD} (E), RS and \overline{CS} (D3~D0: HZ). When \overline{WR} (R/ \overline{W}) = "H", read operation from the display RAM or the status register occurs. When \overline{WR} (R/ \overline{W}) = "L", Write operation to display data RAM or internal command registers occurs, depending on the status of RS input. The \overline{RD} (E) input serves as data latch signal (clock) when it is "H", provided that \overline{CS} = "L" as shown in Table.

ſ	IM2	IM1	IMO	Туре	CS	RS	RD	WR	D7 to D4	D3 to D0	
	1	0	0	4bit 6800 microprocessor bus	CS	RS	Е	R/\overline{W}	D7 to D4	HZ	

Table. 3

In order to match the operating frequency of display RAM with that of the microprocessor, some pipeline processing are internally performed, which require the insertion of a dummy read before the first actual display data read. This is shown in Figure. Below.

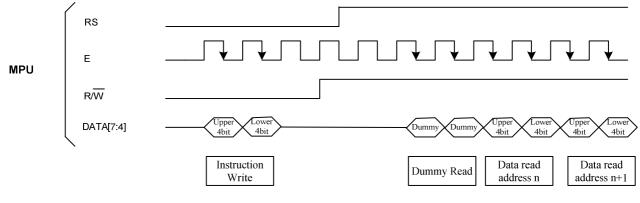


Figure.3

8bit 8080-series Parallel Interface

The parallel interface consists of 8 bi-directional data pads (D7-D0), \overline{WR} (R/ \overline{W}), \overline{RD} (E), RS and \overline{CS} . The \overline{RD} (E) input serves as data read latch signal (clock) when it is "L" provided that \overline{CS} = "L". Display data or status register read is controlled by RS signal. The \overline{WR} (R/ \overline{W}) input serves as data write latch signal (clock) when it is "L" and provided that \overline{CS} = "L". Display data or command register write is controlled by A0 as shown in Table.

-								
IM2	IM1	IM0	Туре	CS	RS	RD	WR	D7 to D0
0	0	1	8 bit 8080 microprocessor bus	CS	RS	RD	WR	D7 to D0

Table 4

Similar to 6800-series interface, a dummy read is also required before the first actual display data read.

Data Bus Signals

The SH1111 identifies the data bus signal according to A0, \overline{RD} (E) and \overline{WR} (R/W) signals.

Common	4/8 bit 6800 processor	4/8 bit 808	0 processor	Function
RS	(R/W)	RD	WR	Function
1	1	0	1	Reads display data.
1	0	1	0	Writes display data.
0	1	0	1	Reads status.
0	0		0	Writes control data in internal register. (Command)

Table. 5

4bit 8080-series Parallel Interface

The parallel interface consists of 4 bi-directional data pads ($D7 \sim D4$), \overline{WR} (R/\overline{W}), \overline{RD} (E), RS and \overline{CS} ($D3 \sim D0$: HZ). The \overline{RD} (E) input serves as data read latch signal (clock) when it is "L" provided that \overline{CS} = "L". Display data or status register read is controlled by RS signal. The \overline{WR} (R/\overline{W}) input serves as data write latch signal (clock) when it is "L" and provided that \overline{CS} = "L". Display data or command register write is controlled by A0 as shown in Table.

Тэ	b	ما	6
l a	D	e.	0

IM2	IM1	IMO	Туре	CS	RS	RD	WR	D7 to D4	D3 to D0
1	0	1	4 bit 8080 microprocessor bus	CS	RS	RD	WR	D7 to D4	HZ

Similar to 6800-series interface, a dummy read is also required before the first actual display data read.

4 Wire Serial Interface (4-wire SPI)

The serial interface consists of serial clock SCL, serial data SI, RS and \overline{CS} . SI is shifted into an 8-bit shift register on every rising edge of SCL in the order of D7, D6, ... and D0. A0 is sampled on every eighth clock and the data byte in the shift register is written to the display data RAM or command register in the same clock. See Figure.

_		Table. /											
	IM2	IM1	IMO	Туре	CS	RS	RD	WR	D7 to D2	D1	D0		
ſ	0	1	0	4-wire SPI	CS	RS	-	-	(HZ)	SI	SCL		

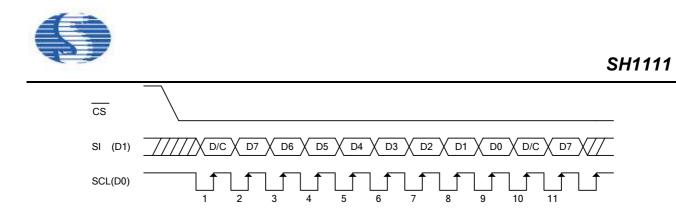
Note: "-" pin must always be HIGH or LOW. D7~ D2 is recommended to connect the VDD1 or GND. It is also allowed to leave D7~ D2 unconnected.

The serial interface is initialized when \overline{CS} is high. In this state, SCL clock pulse or SDI data have no effect. A falling edge on \overline{CS} enables the serial interface and indicates the start of data transmission. The SPI is also able to work properly

when the \overline{CS} always keep low, but it is not recommended.

- When the chip is not active, the shift registers and the counter are reset to their initial statuses.
- Read is not possible while in serial interface mode.
- Caution is required on the SCL signal when it comes to line-end reflections and external noise. We recommend the operation be rechecked on the actual equipment.

3 Wire Serial Interface (3-wire SPI)


The 3 wire serial interface consists of serial clock SCL, serial data SI, and \overline{CS} . SI is shifted into an 9-bit shift register on every rising edge of SCL in the order of D/\overline{C} , D7, D6, ... and D0. The D/\overline{C} bit (first of the 9 bit) will determine the transferred data is written to the display data RAM ($D/\overline{C}=1$) or command register ($D/\overline{C}=0$). See Figure 4.

IM2	IM1	IM0	Туре	cs	RS	RD	WR	D7 to D2	D1	D0
1	0	1	3-wire SPI	cs	Pull Low	-	-	(HZ)	SI	SCL

Table. 8

Note: "-" pin must always be HIGH or LOW. D7~ D2 is recommended to connect the VDD1 or GND. It is also allowed to leave D7~ D2 unconnected.

The serial interface is initialized when \overline{CS} is high. In this state, SCL clock pulse or SDI data have no effect. A falling edge on \overline{CS} enables the serial interface and indicates the start of data transmission. The SPI is also able to work properly when the \overline{CS} always keep low, but it is not recommended.

Figure.5 3-wire SPI data transfer

- When the chip is not active, the shift registers and the counter are reset to their initial statuses.
- Read is not possible while in serial interface mode.
- Caution is required on the SCL signal when it comes to line-end reflections and external noise. We recommend the operation be rechecked on the actual equipment.

I²C-bus Interface

The SH1111 can transfer data via a standard I^2 C-bus and has slave mode only in communication. The command or RAM data can be written into the chip and the status and RAM data can be read out of the chip.

			DDDT		Table. 9					
IM2	IM1	IMO	Туре	CS	RS	RD	WR	D7 to D0	D1	D0
0	1	1	I ² C Interface	Pull Low	SA0		aliin adiiiiin adiiii	(HZ)	SDA	SCL

Note: "-" pin must always be HIGH or LOW. D7~ D2 is recommended to connect the VDD1 or GND. It is also allowed to leave D7~ D2 unconnected.

CS signal could always pull low in I²C-bus application.

Characteristics of the I²C-bus

The I^2 C-bus is for bi-directional, two-line communication between different Ics or modules. The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be connected to a positive supply via a pull-up resistor. Data transfer may be initiated only when the bus is not busy.

Note: The positive supply of pull-up resistor must equal to the value of VDD1.

Bit Transfer

One data bit is transferred during each clock pulse. The data on the SDA line must remain stable during the HIGH period of the clock pulse as changes in the data line at this time will be interpreted as a control signal.

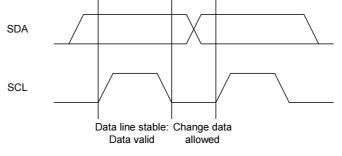


Figure.6 Bit Transfer

Start and Stop conditions

Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW transition of the data line, while the clock is HIGH is defined as the START condition (S). A LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the STOP condition (P).

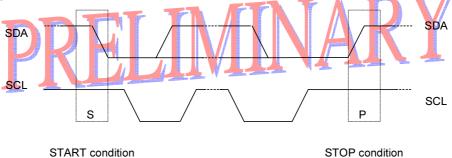


Figure.7 Start and Stop conditions

System configuration

- Transmitter: The device that sends the data to the bus.
- Receiver: The device that receives the data from the bus.
- Master: The device that initiates a transfer, generates clock signals and terminates a transfer.
- Slave: The device addressed by a master.
- Multi-Master: More than one master can attempt to control the bus at the same time without corrupting the message
- Arbitration: Procedure to ensure that, if more than one master simultaneously tries to control the bus, only one is allowed to do so and the message is not corrupted.
- Synchronization: Procedure to synchronize the clock signals of two or more devices.

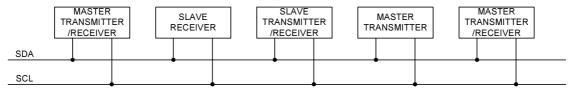
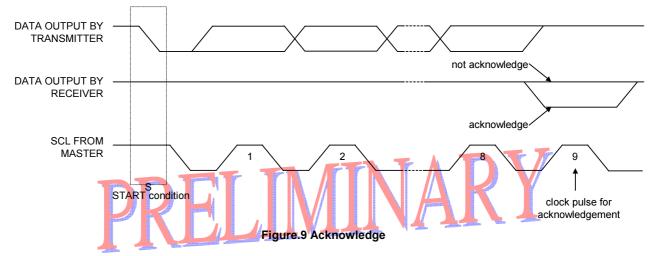
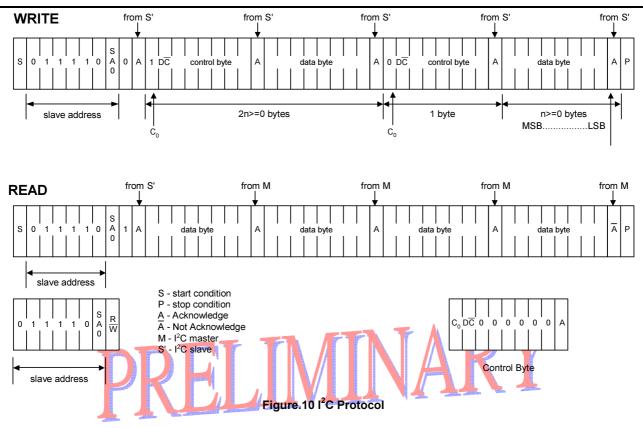



Figure.8 System configuration

Acknowledge


Each byte of eight bits is followed by an acknowledge bit. The acknowledge bit is a HIGH signal put on the bus by the transmitter during which time the master generates an extra acknowledge related clock pulse. A slave receiver which is addressed must generate an acknowledge after the reception of each byte. Also a master receiver must generate an acknowledge after the reception of each byte. Also a master receiver must generate an acknowledge after the reception of each byte. Also a master receiver must generate an acknowledge after the reception of each byte that has been clocked out of the slave transmitter. The device that acknowledges must pull-down the SDA line during the acknowledge clock pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related clock pulse (set-up and hold times must be taken into consideration). A master receiver must signal an end of data to the transmitter by not generating an acknowledge on the last byte that has been clocked out of the slave. In this event the transmitter must leave the data line HIGH to enable the master to generate a stop condition.

Protocol

The SH1111 supports both read and write access. The R/W bit is part of the slave address. Before any data is transmitted on the I²C-bus, the device that should respond is addressed first. Two 7-bit slave addresses (0111100 and 0111101) are reserved for the SH1111. The least significant bit of the slave address is set by connecting the input SA0 to either logic 0(GND) or 1 (VDD1). The I²C-bus protocol is illustrated in Fig.9. The sequence is initiated with a START condition (S) from the I²C-bus master that is followed by the slave address. All slaves with the corresponding address acknowledge in parallel, all the others will ignore the I²C-bus transfer. After acknowledgement, one or more command words follow which define the status of the addressed slaves. A command word consists of a control byte, which defines Co and D/\overline{C} (note1), plus a data byte (see Fig.7). The last control byte is tagged with a cleared most significant bit, the continuation bit Co. After a control byte with a cleared Co-bit, only data bytes will follow. The state of the D/\overline{C} -bit defines whether the data-byte is interpreted as a command or as RAM-data. The control and data bytes are also acknowledged by all addressed slaves on the bus. After the last control byte, depending on the D/\overline{C} bit setting, either a series of display data bytes or command data bytes may follow. If the D/\overline{C} bit was set to '1', these display bytes are stored in the display RAM at the address specified by the data pointer. The data pointer is automatically updated and the data is directed to the intended SH1111 device. If the D/C bit of the last control byte was set to 0', these command bytes will be decoded and the setting of the device will be changed according to the received commands. The acknowledgement after each byte is made only by the addressed slave. At the end of the transmission the I²C-bus master issues a stop condition (P). If the R/\overline{W} bit is set to one in the slave-address, the chip will output data immediately after the slave-address according to the D/\overline{C} bit, which was sent during the last write access. If no acknowledge is generated by the master after a byte, the driver stops transferring data to the master.

Note1:

- 1. Co= "0" : The last control byte , only data bytes to follow,
- Co= "1" : Next two bytes are a data byte and another control byte;
- 2. $D/\overline{C} = "0"$: The data byte is for command operation,
 - $D/\overline{C} =$ "1" : The data byte is for RAM operation.

Access to Display Data RAM and Internal Registers

This module determines whether the input data is interpreted as data or command. When RS = "H", the inputs at D7 – D0 are interpreted as data and be written to display RAM. When RS = "L", the inputs at D7 – D0 are interpreted as command, they will be decoded and be written to the corresponding command registers.

Address Counter (AC)

The address counter is used to assign the Display Data RAM (DDRAM) Address and the Character Generator RAM (CGRAM) Address. When Address information is written into the Instruction Register (IR), this Address information is sent from the Instruction Register to the Address Counter. At the same time, the nature of the Address (either CGRAM or DDRAM) is determined by the instruction.

After writing into or reading from the DDRAM or CGRAM, the Address Counter is automatically increased or decreased by 1 (for Write or Read Function). It must be noted that when the RS pin is set to "0" and R/WB is set to "1", the contents of the Address Counter are outputted to the pins – DB0 to DB6.

Character Mode Addressing—Display Data RAM (DDRAM)

SH1111 provides two kind of character mode. Character mode address can be controlled by DDRAM address instruction.

The Display Data RAM (DDRAM) is used to store the Display Data which is represented as 8-bit character code. The Display Data RAM supports an extended capacity of 80 x 8-bits or 80 characters.

The Display Data RAM Address (ADD) is set in the Address Counter as a hexadecimal.

	Hi	gh Order B	its	Low Order Bits						
Address Counter(hex)	AC6	AC5	AC4	AC3	AC2	AC1	AC0			

Case1: 1-Line Display(5×8 dot Font)

When the number of characters displayed is less than 80, the first character is displayed at the head position. The relationship between the DDRAM Address and position on the OLED Panel is shown below.

Display Position(Digit)	1	2	3	4	•••••	37	38	39	40	41	42	43	44	•••••	77	78	79	80
DDRAM Address(hex)	00	01	02	03	•••••	24	25	26	27	28	29	2A	2B	•••••	4C	4D	4E	4F

(a) 8 characters x 1 line Case(5×8 dot Font, 5×10 dot Font): When only 8 characters are displayed in one Display Line, the relationship between the DDRAM Address and position on the OLED Panel is shown below.

Display Position(Digit)	1	2	3	4	5	6	7	8
DDRAM Address(hex)	00	01	02	03	04	05	06	07
								- 7
Shift Left	-01	02	- 03	04	05	06	07	08
Shift Right	4F	00	01	02	03	04	05	06

(b) 16 characters x I line (When N=1, 5×8 dot Font): When 16 characters are displayed in one Display Line, the relationship between the DDRAM Address and position on the OLED Panel is shown below. (Special Application 16 characters* 1 line, 5*8 Font only)

Display Position(Digit)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
DDRAM Address(hex)	00	01	02	03	04	05	06	07	40	41	42	43	44	45	46	47
Shift Left	01	02	03	04	05	06	07	08	41	42	43	44	45	46	47	48
Shift Right	27	00	01	02	03	04	05	06	67	40	41	42	43	44	45	46

Note:

<1>Display Position 1~8 DDRAM: 00H~27H, the first address is 00H. Shift Right: $00H \rightarrow 27H \rightarrow 26H \rightarrow 25H \dots 04H \rightarrow 03H \rightarrow 02H \rightarrow 01H \rightarrow 00H \rightarrow 27H$.

<2>Display Position 9~16 DDRAM: 40H~67H, the first address is 40H. Shift Right: 40H \rightarrow 67H \rightarrow 68H \rightarrow 67H \rightarrow 44H \rightarrow 43H \rightarrow 42H \rightarrow 41H \rightarrow 40H \rightarrow 67H.

I 16 characters x I line (When N=0, 5×8 dot Font): When 16 characters are displayed in one Display Line, the relationship between the DDRAM Address and position on the OLED Panel is shown below. (Special Application 16 characters* 1 line, 5*8 Font only)

Display Position(Digit)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
DDRAM Address(hex)	00	01	02	03	04	05	06	07	40	41	42	43	44	45	46	47
								1					1			
Shift Left	01	02	03	04	05	06	07	08	41	42	43	44	45	46	47	48
Shift Right	4F	00	01	02	03	04	05	06	3F	40	41	42	43	44	45	46

Note:

<1>Display Position 1~8 DDRAM: 00H~4FH, the first address is 00H. Shift Right: 00H \rightarrow 4FH \rightarrow 4EH \rightarrow 4DH 3FH \rightarrow 3EH \rightarrow 3DH 01H \rightarrow 00H \rightarrow 4FH.

<2>Display Position 9~16 DDRAM: 00H~4FH, the first address is 40H. Shift Right: 40H \rightarrow 3FH \rightarrow 3EH \rightarrow 3DH \rightarrow 00H \rightarrow 4FH \rightarrow 4EH \rightarrow 4DH 41H \rightarrow 40H \rightarrow 3FH.

(d) 20 characters x 1 line (5×8 dot Font, 5×10 dot Font): When 20 characters are displayed in one Display Line, the relationship between the DDRAM Address and position on the OLED Panel is shown below.

Display Position(Digit)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
DDRAM Address(hex)	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10	11	12	13
Shift Left	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10	11	12	13	14
Shift Right	4F	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10	11	12

Case2: 2-Line Display (N=1, 5×8 dot Font)

The Number of Characters displayed is less than 40 x 2 lines When the number of characters displayed is less than 40 x 2 lines, then the first character of the first and second lines are displayed starting from the head. It is important to note that every line reserve 40x8bits DDRAM space: 1^{st} line is 00H to 27H; 2^{nd} line is 40H to 67H. Please refer the figure below.

Display Position(Digit)	1	2	3	4	5	•••••	36	37	38	39	40
DDRAM Address(hex)	00	01	02	03	04	•••••	23	24	25	26	27
	40	41	42	43	44	•••••	63	64	65	66	67

(a) 8 characters x 2 lines: The relationship between the DDRAM address and position of the OLED panel is shown below.

Display Position(Digit)	1	2	3	4	5	6	7	8
	00	01	02	03	04	05	06	07
DDRAM Address(hex)	40	41	42	43	44	45	46	47
	a angenerijanih, si							V
Chiffleft	01	02	03	04	05	06	07	08
Shift Left	41	42	43	44	45	46	47	48
						lite estilition still		
Shift Right	27	00	01	02	03	04	05	06
Shint Right	67	40	41	42	43	44	45	46

(b) 12 characters x 2 lines: The relationship between the DDRAM address and position of the OLED panel is shown below.

Display Position(Digit)	1	2	3	4	5	6	7	8	9	10	11	12
DDRAM Address(hex)	00	01	02	03	04	05	06	07	08	09	0A	0B
	40	41	42	43	44	45	46	47	48	49	4A	4B
Shift Left	01	02	03	04	05	06	07	08	09	0A	0B	0C
Shint Len	41	42	43	44	45	46	47	48	49	4A	4B	4C
Shift Right	27	00	01	02	03	04	05	06	07	08	09	0A
Onnertight	67	40	41	42	43	44	45	46	47	48	49	4A

I16 characters x 2 lines: The relationship between the DDRAM address and position of the OLED panel is shown below.

Display Position(Digit)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
DDRAM Address(hex)	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F
	40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F
Shift Left	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10
Onine Lene	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E	4F	50
Shift Right	27	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E
Shint Right	67	40	41	42	43	44	45	46	47	48	49	4A	4B	4C	4D	4E

(d) 20 characters x 2 lines: The relationship between the DDRAM address and position of the OLED panel is shown below.

							-				
Display Position(Digit)	1	2	3	4	5	•••••	16	17	18	19	20
DDRAM Address(hex)	00	01	02	03	04		0F	10	11	12	13
DDRAW Address(nex)	40	41	42	43	44		4F	50	51	52	53
Shift Left	01	02	03	04	05		10	11	12	13	14
Shiit Leit	41	42	43	44	45	•••••	50	51	52	53	54
Shift Dight	27	00	01	02	03		0E	0F	10	11	12
Shift Right	67	40	41	42	43	•••••	4E	4F	40	51	52

(e) 20 characters x 1 line: When 20 characters are displayed in one Display Line, the relationship between the DDRAM Address and position on the OLED Panel is shown below.

Display Position(Digit)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
DDRAM Address(hex)	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10	11	12	13
Shift Left	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10	11	12	13	14
Shift Right	27	00	01	02	03	04	05	06	07	08	09	0A	0B	0C	0D	0E	0F	10	11	12

Case 3: 40-Character x 2 Lines Display (Cascade Mode, N=1, 5×8 dot Font)

SH1111 (Master) can be extended to display 40 characters x 2 lines by cascade the other SH1111 (Slave). When there is a Display Shift operation, the DDRAM Address is also shifted. Please refer to the example below.

			· #					- 55		8			2226		127			
Display Posi <mark>tio</mark> n(<mark>Digit</mark>)	1	2	3	4	•••••	17	18	19	20	21	22	23	24		37	38	39	40
	00	01	02	03	,	10	11	12	13	14	15	16	17		24	25	26	27
DDRAM Address(hex)	40	41	42	43		50	51	52	53	54	55	56	57		64	65	66	67
addition and a second			SH	1111	display	(Mas	ster)				Cas	cade	e Seo	cond SH	1111	(Sla	ave)	
Shift Left	01	02	03	04	•••••	11	12	13	14	15	16	17	18	•••••	25	26	27	00
Shint Left	41	42	43	44	•••••	51	52	53	54	55	56	57	58	•••••	65	66	67	40
Shift Right	27	00	01	02	•••••	0F	10	11	12	13	14	15	16	•••••	23	24	25	26
	67	40	41	42		4F	50	51	52	53	54	55	56		63	64	65	66

Case 4: 20-Character x 2 Lines Display (N=0, 5×10 dot Font)

Display Position(Digit)	1	2	3	4	5	•••••	16	17	18	19	20
DDRAM Address(hex)	00	01	02	03	04		0F	10	11	12	13
	14	15	16	17	18	•••••	23	24	25	26	27
Shift Left	01	02	03	04	05	•••••	10	11	12	13	14
Shint Len	15	16	17	18	19	••••	24	25	26	27	28
Shift Dight	4F	00	01	02	03	•••••	0E	0F	10	11	12
Shift Right	13	14	15	16	17	•••••	22	23	24	25	26

Case 5: 16-Character x 4 Lines Display (N=1, 5×8 dot Font)

SH1111 can display 16 characters x 4 lines. When there is a Display Shift operation, the DDRAM Address is also shifted. Please refer to the example below.

Display Position(Digit)	1	2	3	4	5		12	13	14	15	16
	00	01	02	03	04		0B	0C	0D	0E	0F
DDRAM Address(hex)	40	41	42	43	44		4B	4C	4D	4E	4F
	10	11	12	13	14	•••••	1B	1C	1D	1E	1F
	50	51	52	53	54	•••••	5B	5C	5D	5E	5F
	01	02	03	04	05	•••••	0C	0D	0E	0F	10
Shift Left	41	42	43	44	45		4C	4D	4E	4F	50
Shiit Leit	11	12	13	14	15	•••••	1C	1D	1E	1F	20
	51	52	53	54	55	•••••	5C	5D	5E	5F	60
	27	00	01	02	03		0A	0B	0C	0D	0E
Shift Diaht	67	40	41	42	43	•••••	4A	4B	4C	4D	4E
Shift Right	0F	10	11	12	13		1A	1B	1C	1D	1E
	4F	50	51	52	53	•••••	5A	5B	5C	5D	5E

Case 6: 20-Character x 4 Lines Display (N=1,5×8 dot Font) SH1111 can display 20 characters x 4 lines. When there is a Display Shift operation, the DDRAM Address is also shifted. Please refer to the example below.

ase reler to the example belo	v v.										
Display Position(Digit)	1	2	3	4	5		16	17	18	19	20
	00	01	02	03	04	•••••	0F	10	11	12	13
	40	41	42	43	44	•••••	4F	50	51	52	53
DDRAM Address(hex)	14	15	16	17	18	•••••	23	24	25	26	27
	54	55	56	57	58	•••••	63	64	65	66	67
	01	02	03	04	05	•••••	10	11	12	13	14
Shift Left	41	42	43	44	45	•••••	50	51	52	53	54
Shint Len	15	16	17	18	19	•••••	24	25	26	27	00
	55	56	57	58	59	•••••	64	65	66	67	40
	•										
	27	00	01	02	03	•••••	0E	0F	10	11	12
Shift Right	67	40	41	42	43	•••••	4E	4F	50	51	52
	13	14	15	16	17	•••••	22	23	24	25	26
	53	54	55	56	57	•••••	62	63	64	65	66

4	III.
W	IIP'

Graphic Mode Addressing--Graphic Display Data RAM (GDDRAM)

SH1111 provides not only character mode but also graphic mode. User can fill in 100x32 data in embedded RAM to display graphic. Graphic mode addressing is different from character mode. Use DDRAM address instruction to set Page address of Graphic mode and CGRAM address instruction to set Column Address of Graphic mode. DB7 DB5 DB2 DB1 DBO

Address Format

DB6

DB4

DB3

\sim	0																																	r				
OLED OL	ED	F	Page	Add	lres	s = (0100	0001	1	Ρ	age	Add	Iress	5 = (100	001	0	Ρ	age	Ado	lress	s = C	100	000	1	Pa	age	Add	ress	s = 0	100	0001	1	Address	Page			
OUTPUT	OUTPUT	D7	D6	D5	D4	D3	D2	D1	D0	D7	D6	D5	D4	D3	D2	D1	D0	D7	D6	D5	D4	D3	D2	D1	D0	D7	D6	D5	D4	D3	D2	D1	DO	Data	J	Coluin		Page
SEG100	SEG1		age / Col /												1000						ess ess			0001						= 01 = 10		0000						Page Address
SEG99	SEG2		age / Col /												1000 0000			Pa (ige / Col /	Addr Addr	ress re <mark>s</mark> s	= 0 [.] = 1(0001						= 01 = 10)000 001		N)	ÿÿ	5	'n
SEG98	SEG3		age / Col /												1000 0000									0001 0010						= 01 = 10				ŝ	>			
SEG96	SEG4		age / Col /												1000 0000)001)011						= 01 = 10)000 011		4	•	-	، د	0
:	:																																	:				-
:	:																						Constanting	Statistics.										:		CADO		0
SEG4	SEG97		age / Col /												1000 1100									0001						= 01 = 11		0000		76	ì	-	_	
SEG3	SEG98		age / Col /												1000 1100									0001 0001						= 01 = 11)000)001		86	8		ארי	0
SEG2	SEG99		age / Col /												1000 1100									0 <mark>001</mark>)000 010		99	3	CADO	ירעי	0
SEG1	SEG100		age / Col /												1000 1100			Pa (ige / Col /	Addr Addr	ess ess	= 0 [.] = 1	1000 1100	0001 0011						= 01 = 11)000 011		100	200			0
		1FH	1EH	1DH	1CH	1BH	1AH	19H	18H	17H	16H	15H	14H	13H	12H	11H	10H	0FH	0EH	0DH	0CH	OBH	0AH	H60	H80	07H	06H	05H	04H	03H	02H	01H	00Н	Address	Line	-	_	
SHL=1	SHL=0	COM32	COM31	COM30	COM29	COM28	COM27	COM26	COM25	COM24	COM23	COM22	COM21	COM20	COM19	COM18	COM17	COM16	COM15	COM14	COM13	COM12	COM11	COM10	COM9	COM8	COM7	COM6	COM5	COM4	COM3	COM2	COM1	-	OLEE			PAD1
Ë	ö	32 COM1	31 COM2	30 COM3	29 COM4	28 COM5	27 COM6	26 COM7	25 COM8	24 COM9	23 COM10	22 COM11		20 COM13	19 COM14	18 COM15	17 COM16	16 COM17	15 COM18	14 COM19	13 COM20	12 COM21	11 COM22	10 COM23	9 COM24	8 COM25		6 COM27	5 COM28	14 COM29	3 COM30			=0 CMS=1	OLED OUTPUT			PADO

21

The Graphic Mode Page Address Circuit

As shown in Figure.11, page address of the display data RAM is specified through the Page Address Set Command. The page address must be specified again when changing pages to perform access.

The Graphic Mode Column Address Circuit

As shown in Figure.11, the display data RAM column address is specified by the Column Address Set command. The specified column address is incremented (+1) with each display data read/ write command. This allows the MPU display data to be accessed continuously. Because the column address is independent of the page address, when moving, for example, from page0 column 43H to page 1 column 00H, it is necessary to re-specify both the page address and the column address.

Furthermore, as shown in Table.7, the Column re-mapping (SHL) command (segment driver direction select command) can be used to reverse the relationship between the display data RAM column address and the segment output. Because of this, the constraints on the IC layout when the OLED module is assembled can be minimized.

		Table	e. <i>1</i>		
	Segment Output	SEG1		SEG100	
	SHL = "0"	0 (H) →	Column Address	→ 63 (H)	
	SHL = "1"	63 (H) ←	Column Address	← 0-(H)	TT
PF	EL			4k	Y

The Graphic Mode Line Address Circuit

The line address circuit, as shown in Figure 12, specifies the line address relating to the common output when the contents of the display data RAM are displayed. Using the display start line address set command, what is normally the top line of the display can be specified (this is the COM0 output when the common output mode is normal, and the COM32 output for SH1111, when the common output mode is reversed. The display area is a 32-line area for the SH1111 from the display start line address.

If the line addresses are changed dynamically using the display start line address set command, screen scrolling, page swapping, etc. that can be performed relationship between display data RAM and address (if initial display line is 0EH).

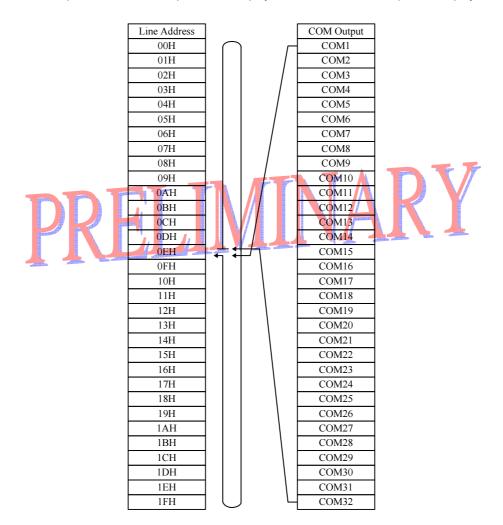


Figure.12 Display Start Line Setting Function

Character Generator ROM (CGROM)

The Character Generator ROM (CGROM) is used to generate either 5 x 8 dots or 5 x 10 dots character patterns from 8-bit character codes. SH1111 build in four set of font tables as "Western European-I", "English Japanese", "English Russian" and "Western European-II". Character font can be selected by programming FT[2:0].

Upper 4bit																
Lower 4bit	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0000	CG RAM (1)												D.			
0001	CG RAM (2)				A											
0010	CG RAM (3)				₿										80	B
0011	CG RAM (4)			3											8	
0100	CG RAM (5)										••					62
0101	CG RAM (9)															
0110	CG RAM (7)		8													
0111	CG RAM (8)			P		U	Ð				М					
1000	CG RAM (1)		G	8						8	æ					38
1001	CG RAM (2)		3								Ð					
1010	CG RAM (3)		-		J						H			Ŀ		H
1011	CG RAM (4)				ĸ					à					8	
1100	CG RAM (5)										••				œ	
1101	CG RAM (6)						Pi									
1110 .	CG RAM (7)										Ħ					
1111 İ	CG RAM (8)															

ENGLISH_JAPANESE CHARACTER FONT TABLE (default FT[1:0]= 00).

VESTERN EU	ROPE	AN CH	ARACT	ER FC	NT TA	BLE I (FT[1:0]=01)								
Upper 4bit Lower 4bit	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0000	CG RAM (1)							F	Û							
0001	CG BAM (2)							-								
0010	CG RAM (3)															
0011	00 kam (4)					D		10								
0100	CG RAM (5)															
0101	CG RAM (6)															
0110	CG RAM (7)		8.													
0111	CG RAM (8)															
1000	CG RAM (1)							28								
1001	CG RAM (2)		2		I	3										
1010	CG RAM (3)															
1011	CG RAM (4)				ĸ											
1100	CG RAM (5)					÷										
1101	CG RAM (0)															
1110	CG RAM (7)															
1111	CG RAM (8)		*													

ENGLISH_RUS	SIAN (CHARA	CTER	FONT	TABLE	E(FT[1:	0]=10)									
Upper 4bit Lower 4bit	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0000	CG RAM (1)									20						3
0001	CG RAM (2)				.					NQ.						
0010	CG RAM (3)								ð	30		Ð				
0011	CG RAM (4)									20						
0100	CG RAM (5)								33	30				2		Ш
0101	CG RAM (6)			Ш						30				3		
0110	CG RAM (7)									38				22		
0111	CG RAM (*)															
1000	CG RAM (1)								-	2						
1001	CG RAM (2)									1						
1010	CG RAM (3)									20					90	
1011	CG RAM (4)									30						
1100	CG RAM (5)															
1101	CG RAM (6)								2							8
1110	CG RAM (75													2		
1111	CG RAM. (8)											T			œ	

WESTERN EU	ROPE	AN CH	ARACT	ER FC	NT TA	BLE II	(FT[1:0)]=11)								
Upper 4bit Lower 4bit	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111
0000	CG RAM (1)								U.							•
0001	CG RAM (2)							Π	13							
0010	CG RAM (3)				B				11							
0011	CG RAM (4)	ß				8			30	8						
0100	CG RAM (5)				D	Τ			30							ø
0101	CG RAM (6)					L			-	æ				2		T
0110	CG RAM (7)		8.	Ē		L.										
0111	CG RAM (8)					L.						28		Ô		
1000	CG RAM (1)			8		*		28							ĸ	
1001	CG RAM (2)		2	-	I	Y								Π		
1010	CG RAM (3)					2								8		
+ 1011	CG RAM (4)				BS.				I			-88		T		
1100	CG RAM (5)					*.						*				
1101	CG RAM (6)															
1110	CG RAM (7)			2		<i>.</i>					8				P	
1111	CG RAM (8)		*					4	×I.	4	3			8		

Character Generator RAM (CGRAM)

The Character Generator RAM (CGRAM) is used to generate either 5×8 dot or 5×10 dot character patterns. It can generate eight 5×8 dot character patterns or four 5×10 dot character patterns. The character patterns generated by the CGRAM can be rewritten. User-defined character patterns for the CGRAM are supported.

RELATIONSHIP BETWEEN CGRAM ADDRESS, DDRAM CHARACTER CODE AND CGRAM CHARACTER PATTERNS (FOR 5 X 8 DOT CHARACTER PATTERN)

		har (DD							С	GR.	AM	Ad	dre	ss						r Pa M D				
7	6	5	4	3	2	1	0		5	4	3	2	1	0		7	6	5	4	3	2	1	0	
Hi	gh					L	ow		Hi	gh			Lo	SW		Hi	gh					Lo	w	
												0	0	0		*	*	*	1	1	1	1	0	Character Pattern 1
												0	0	1		*	*	*	1				1	
												0	1	0		*	*	*	1				1	
0	0	0	0	*	0	0	0		0	0	0	0	1	1		*	*	*	1	1	1	1		
Ŭ	0	Ŭ	0		Ŭ		Ŭ		Ŭ	Ŭ	Ŭ	1	0	0		*	*	*	1		1			
												1	0	1		*	*	*	1			1		
												1	1	0		*	*	*	1	0	0	0	1	
												1	1	1		*	*	*	0	0	0	0	0	Cursor Position
												0	0	0		*	*	*	1	0	0	0	1	Character Pattern 2
										1811. I		0	0	-1	A	*	*	*	0	1	0	1	0	
												0	1	0	and in succession	*	*	*	1	1	1	1	1	
0	0	0	0	*	0	0	1	1	0	0	1	0	1	1		*	*	*	0	0	1	0	0	
												1	0	0		^ *	^ *	^ *	1	1	1	1	1	nefelitite tellite anteilitite
								titin -				1	0		line 1	*	*	*	0	0	1	0	0	
												1	1	0	-	*	*	*	0 0	0	1 0	0	0	Cursor Position
					-		-													-			-	Cursor Position
					•	•	•		•	•	•	•	•	•					•	•	•	•	•	
0	0	0	0	*	•	•	•		•	•	•	•	•	•		*	*	*	•	•	•	•	•	Character Pattern 3~7
						•	•		•	•		•	•						•	•	•			
					-		•		-	•	•	0	0	0		*	*	*	0	1	1	1	1	Character Pattern 8
												0	0	1		*	*	*	1	0	0	0	0	
												0	1	0	ł	*	*	*	1	0	0	0	0	
_		_	_									0	1	1		*	*	*	0	1	1	1	0	
0	0	0	0	*	1	1	1		1	1	1	1	0	0	1	*	*	*	0	0	0	0	1	
												1	0	1	1	*	*	*	0	0	0	0	1	
												1	1	0	1	*	*	*	1	1	1	1	0	
												1	1	1	1	*	*	*	0	0	0	0	0	Cursor Position

Notes:

1. * = Not Relevant

2. The character pattern row positions correspond to the CGRAM data bits - 0 to 4, where bit 4 is in the left position.

3. Character Code Bits 0 to 2 correspond to the CGRAM Address Bits 3 to 5 (3 bits: 8 types)

4. If the CGRAM Data is set to "1", then the selection is displayed. If the CGRAM is set to "0", there no selection is made.

5. The CGRAM Address Bits 0 to 2 are used to define the character pattern line position. The 8th line is the cursor position and its display is formed by the logical OR with the cursor. The 8th line CGRAM data bits 0 to 4 must be set to "0". If any of the 8th line CGRAM data bits 0 to 4 is set to "1", the corresponding display location will light up regardless of the cursor position.

6. When the Character Code Bits 4 to 7 is set to "0", then the CGRAM Character Pattern is selected. It must be noted that Character Code Bit 3 is not relevant and will not have any effect on the character display. Because of this, the first Character Pattern shown above I can be displayed when the Character Code is 00H or 08H.

RELATIONSHIP BETWEEN CGRAM ADDRESS, DDRAM CHARACTER CODE AND CGRAM CHARACTER PATTERNS (FOR 5 X 10 DOT CHARACTER PATTERN)

		har (DD							С	GR	AM	Ad	dre	ss				ara CG						
7	6	5	4	3	2	1	0		5	4	3	2	1	0		7	6	5	4	3	2	1	0	
Hi	igh					Lo	w		Hi	gh			Lo	w		Hi	gh					Lo	w	
											0	0	0	0		*	*	*	0	0	1	0	0	Character Pattern 1
											0	0	0	1		*	*	*	0	1	1	1	0	
											0	0	1	0		*	*	*	1	0	1	0	1	
											0	0	1	1		*	*	*	1	0	1	0	0	
											0	1	0	0		*	*	*	0	1	1	0	0	
											0	1	0	1		*	*	*	0	0	1	1	0	
											0	1	1	0		*	*	*	0	0	1	0	1	
0	0	0 0 0 * 0 0 *					*		0	0	1	0	0	0		*	*	*	0	1	1	1	0	
											1	0	0	1		*	*	*	0	0	1	0	0	
											1	0	1	0		*	*	*	*	*	*	*	*	Cursor Position
											1	0	1	1		*	*	*	*	*	*	*	*	
											1	1	0	0		*	*	*	*	*	*	*	*	
											1	1	0	1		*	*		*	*	*		*	
					100 I 100-						1	1	1	0	and the second second	*	*	*	*	*	*		*	
									1011110		1	1	1	1		/*	*	*	*	*	*	*	*	
						-			•			•	•	•	W	*	*	*	•		•	•		and the second second
0	0	0	0	*	•	•	*		•			•	•		. V	*	*	*	•	•	•	•	•	Character Pattern 2~3
	-		-		•	•	<u>Pite</u>	Vilin #	٠	٠	•	•	•	•		*	*	*	•	•	•	•	•	
					•	•			٠	٠	•	•	•	•		*	*	*	•	•	•	•	•	Character Dettern 4
											0	0	0	0		*	*	*	1	0	1	0	1	Character Pattern 4
											0	0	0	1 0		*	*	*	1	1	1	1	1	
											0	0	1	1		*	*	*	1	1	1	1	1	
											0	1	0	0		*	*	*	0	1	1	1	0	
											0	1	0	1		*	*	*	0	0	1	0	0	
											0	1	1	0		*	*	*	0	0	1	0	0	
	_	~	~	*			*				0	1	1	1		*	*	*	1	0	1	0	1	
0	0	0	0	Ŷ	1	1	î		1	1	1	0	0	0		*	*	*	0	1	1	1	0	
									1	0	0	1		*	*	*	0	0	1	0	0			
										1	0	1	0		*	*	*	*	*	*	*	*	Cursor Position	
										1	0	1	1		*	*	*	*	*	*	*	*		
											1	1	0	0		*	*	*	*	*	*	*	*	
											1	1	0	1		*	*	*	*	*	*	*	*	
											1	1	1	0		*	*	*	*	*	*	*	*	
											1	1	1	1		*	*	*	*	*	*	*	*	

Notes: 1. * = Not Relevant

2. The character pattern row positions correspond to the CGRAM data bits - 0 to 4, where bit 4 is in the left position.

3. Character Code Bits 1 and 2 correspond to the CGRAM Address Bits – 4 and 5 respectively (2 bits: 4 types)

4. If the CGRAM Data is set to "1", then the selection is displayed. If the CGRAM is set to "0", there no selection is made.

5. The CGRAM Address Bits 0 to 3 are used to define the character pattern line position. The 11th line is the cursor position and its display is formed by the logical OR with the cursor. The 11th line CGRAM data bits 0 to 4 must be set to "0". If any of the 11th line CGRAM data bits 0 to 4 is set to "1", the corresponding display location will light up regardless of the cursor position.

6. When the Character Code Bits 4 to 7 are set to "0", then the CGRAM Character Pattern is selected. It must be noted that Character Code Bit – 0 and 3 are not relevant and will not have any effect on the character display. Because of this, the Character Pattern shown above (\$) can be displayed when the Character Code is 00H, 01H, 08H or 09H.

Common and Segment Drivers

SH1111 provides 32 Common Drivers and 100 Segment Driver Outputs. When a character font and the number of lines to be displayed have been selected, the corresponding Common Drivers output the waveform automatically. A non-selection waveform will be outputted by the rest of the Common outputs.

Cursor/Blink Control Circuit

The cursor or character blinking is generated by the Cursor / Blink Control Circuit. The cursor or the blinking will appear with the digit located at the Display Data RAM (DDRAM) Address Set in the Address Counter (AC).

	AC6	AC5	AC4	AC3	AC2	AC1	AC0
Address Counter	0	0	0	0	1	1	1

Case 1: For 1-line Display

Example: When the Address Counter (AC) is set to 0EH, the cursor position is displayed at DDRAM Address 0EH.

Display Position	1	2	3	4	5	 14	15	16		37	38	39	40
DDRAM Address (Hexadecimal)	00H	01H	02H	03H	04H	 0DH	0EH	0FH	••••	25H	26H	27H	28H

Note:

The cursor or blinking appears when the Address Counter (AC) selects the Character Generator RAM (CGRAM). When the AC selects CGRAM Address, then the cursor or the blinking is displayed in an irrelevant and meaningless position.

Case 2: For 2-line Display

Example: When the Address Counter (AC) is set to 46H, the cursor position is displayed at DDRAM Address 46H.

Display Position	1	2	3	4	5	6	7	8	9	 17	18	19	20
DDRAM Address	00H	01H	02H	03H	04H	06H	07H	08H	09H	 10H	11H	12H	13H
(Hexadecimal)	40	41	42	43	44	45	46H	47H	48H	 50H	51H	52H	53H

Cursor Position

Cursor Position

Note:

The cursor or blinking appears when the Address Counter (AC) selects the Character Generator RAM (CGRAM). When the AC selects CGRAM Address, then the cursor or the blinking is displayed in an irrelevant and meaningless position.

Interface to OLED

(1) Character Font and Number of Lines.

The SH1111 provides a 5X8 dot character font 1-line mode, a 5X10 dot character font 1-line mode, a 5X8 dot character font 2-line mode, a 5X10 dot character font 2-line mode, a 5X8 dot character font 4-line mode as shown in the table below. Five types of common signals are available as displayed in the table. The number of lines and the font type can be selected by the program and pad option.

Number of Lines	Character Font	Number of Common Signals	Duty Factor
1	5 $ imes$ 7 dots + Cursor (or 5 $ imes$ 8 dots)	8	1/8
1	5×10 dots + Cursor	11	1/11
2	5 $ imes$ 7 dots + Cursor (or 5 $ imes$ 8 dots)	16	1/16
2	5×10 dots + Cursor	22	1/22
4	5 $ imes$ 7 dots + Cursor (or 5 $ imes$ 8 dots)	32	1/32

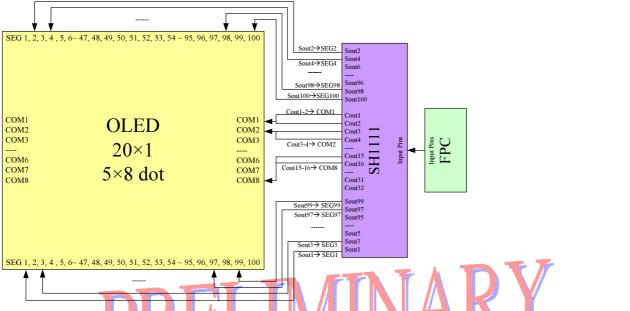
(2) Connection to OLED

The following 9 OLED connection examples show the various combinations between characters and lines. The various combinations can be select by pad option "GC", "CAS_EN", "CAS_MS", "CHAR16", "RESOL" and register option "N", "F" (Function Set Command).

The various combination	s between SH1111 and OLED Panel are displayed in the followir	na table
		iy labie.

					Master				Slave						
Case	Resolution	GC	CAS _EN	CAS _MS	CHAR16	RESOL	N	F	GC	GC CAS CAS CHAR16 RESOL N F				F	
1	20 character ×1 line, 5×8 dot	0	0	*	0	0	0	0		Sing	gle Chip	Application,	No Slave		
2	20 character \times 2 line, 5 \times 8 dot	0	0	*	0	0	1	-		Sing	gle Chip	Application,	No Slave		
3	20 character \times 4 line, 5 \times 8 dot	0	0	*	0	1	1	L.		Sing	gle Chip	Application,	No Slave		
4	40 character ×1 line, 5×8 dot	0	1	1	0	0	0	0	0	1	0	0	0	0	0
5	40 character ×2 line, 5×8 dot	0	1	1	0	0	1	-	0	1	0	0	0	1	-
6	20 character×1 line,5×10 dot	0	0	*	0	0	0	1		Sing	gle Chip	Application,	No Slave		
7	20 character×2 line,5×10 dot	0	0	*	0	1	0	1		Sing	gle Chip	Application,	No Slave		
8	40 character×1 line,5×10 dot	0	1	1	0	0	0	1	0	1	0	0	0	0	1
9	16 character ×1 line,5×8 dot	0	0	*	1	0	-	-	Single Chip Application, No Slave						
10	16 character ×4 line,5×8 dot	0	0	*	1	1	1	-	Single Chip Application, No Slave						
11	100×32 dot matrix (Graphic Mode)	1	0	*	*	*	-	-	Single Chip Application, No Slave						

Note⁻

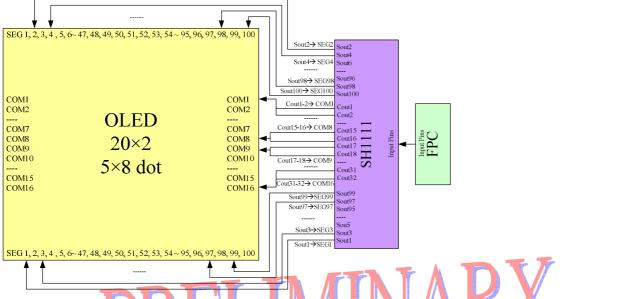

1. The display resolution of Graphic Mode can select by register "Graphic Duty [3:0]".

2. *= Connect to GND or VDD1. User can not floating those pins.
3. -= Set this bit to "0" or "1". When N = 1(2-line display mode), no mater F = 0 or 1, the 5 x 8 dot character font is selected.
4. Single chip application, CK_SFT, CK_LA, MS_D and MS_FM must be floating.

5. When use cascade mode, the COM1~32 of master and COM1~32 of slave can not be connect together.

Case1: 20 characters X 1 line, 5 X 8 Font (1/8 duty, single chip mode) In this mode, COM1~2 switch together, COM3~4, COM5~6, COM7~8, COM9~10, COM11~12, COM13~14, COM15~16, COM17~18, COM19~20, COM21~22, COM23~24, COM25~26, COM27~28, COM29~30 and COM31~32 switch together.

The relationship between Master/Slave output COM&SEG and OLED Panel input COM&SEG show in the following table: (Master/Slave output COM1~32 named Cout1~32. Master/Slave output SEG1~100 named Sout1~100.)

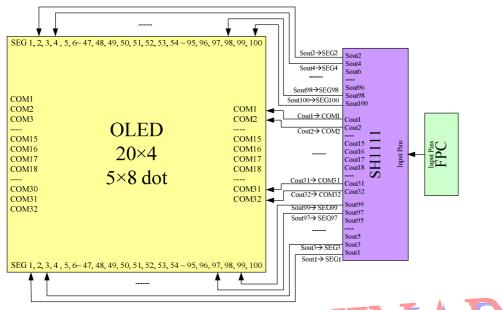

	Master & C	LED Panel
	Master Output	OLED Panel Input
	Cout1,Cout2	COM1
	Cout3,Cout4	COM2
	Cout5,Cout6	COM3
Relationship of COM	Cout7,Cout8	COM4
	Cout9,Cout10	COM5
	Cout11,Cout12	COM6
	Cout13,Cout14	COM7
	Cout15,Cout16	COM8
	Sout1	SEG1
	Sout3	SEG3
	Sout5	SEG5
Relationship of SEG (Odd Number)	•••••	
	Sout95	SEG95
	Sout97	SEG97
	Sout99	SEG99
	Sout2	SEG2
	Sout4	SEG4
Polationship of SEC	Sout6	SEG6
Relationship of SEG (Even Number)		
	Sout96	SEG96
	Sout98	SEG98
	Sout100	SEG100

Pad Option and Register Option value are shown below:

					Master							Slave			
Case	Resolution	GC	CAS _EN	CAS _MS	CHAR16	RESOL	N	F	GC	CAS _EN	CAS _MS	CHAR16	RESOL	N	F
1	20 character ×1 line, 5×8 dot	0	0	*	0	0	0	0		Sing	gle Chip	Application,	No Slave		

Case2: 20 characters X 2 line, 5 X 8 Font (1/16 duty, single chip mode) In this mode, COM1~2 switch together, COM3~4, COM5~6, COM7~8, COM9~10, COM11~12, COM13~14, COM15~16, COM17~18, COM19~20, COM21~22, COM23~24, COM25~26, COM27~28, COM29~30 and COM31~32 switch together.

The relationship between Master/Slave output COM&SEG and OLED Panel input COM&SEG show in the following table: (Master/Slave output COM1~32 named Cout1~32. Master/Slave output SEG1~100 named Sout1~100.)

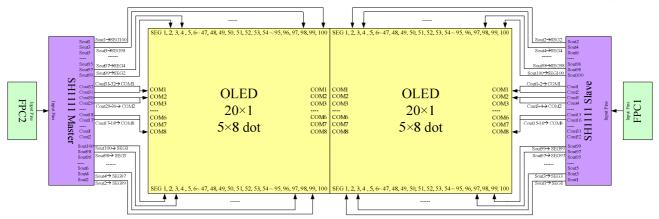

	Master & C	LED Panel			
	Master Output	OLED Panel Input			
	Cout1,Cout2	COM1			
	Cout3,Cout4	COM2			
	Cout5,Cout6	COM3			
	Cout7,Cout8	COM4			
Relationship of COM					
	Cout25,Cout26	COM13			
	Cout27,Cout28	COM14			
	Cout29,Cout30	COM15			
	Cout31,Cout32	COM16			
	Sout1	SEG1			
	Sout3	SEG3			
	Sout5	SEG5			
Relationship of SEG (Odd Number)		•••••			
	Sout95	SEG95			
	Sout97	SEG97			
	Sout99	SEG99			
	Sout2	SEG2			
	Sout4	SEG4			
Deletionship of CEC	Sout6	SEG6			
Relationship of SEG (Even Number)					
	Sout96	SEG96			
	Sout98	SEG98			
	Sout100	SEG100			

Pad Option and Register Option value are shown below:

					Master							Slave			
Case	Resolution	GC	CAS _EN	CAS _MS	CHAR16	RESOL	N	F	GC	CAS _EN	CAS _MS	CHAR16	RESOL	N	F
2	20 character ×2 line, 5×8 dot	0	0	*	0	0	1	-		Sing	gle Chip	Application,	No Slave		

Case3: 20 characters X 4 line, 5 X 8 Font (1/32 duty, single chip mode)

The relationship between Master/Slave output COM&SEG and OLED Panel input COM&SEG show in the following table: (Master/Slave output COM1~32 named Cout1~32. Master/Slave output SEG1~100 named Sout1~100.)


	Master & C	LED Panel			
	Master Output	OLED Panel Input			
	Cout1	COM1			
	Cout2	COM2			
	Cout3	COM3			
	Cout4	COM4			
Relationship of COM					
	Cout29	COM29			
	Cout30	COM30			
	Cout31	COM31			
	Cout32	COM32			
	Sout1	SEG1			
	Sout3	SEG3			
	Sout5	SEG5			
Relationship of SEG (Odd Number)					
	Sout95	SEG95			
	Sout97	SEG97			
	Sout99	SEG99			
	Sout2	SEG2			
	Sout4	SEG4			
Deletionship of SEC	Sout6	SEG6			
Relationship of SEG (Even Number)					
	Sout96	SEG96			
	Sout98	SEG98			
	Sout100	SEG100			

Pad Option and Register Option value are shown below:

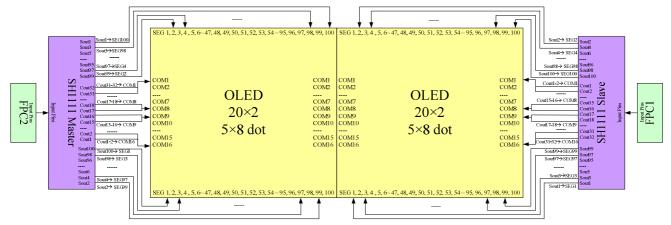
		Master								Slave							
Case	Resolution	GC	CAS _EN	CAS _MS	CHAR16	RESOL	Ν	F	GC	CAS _EN	CAS _MS	CHAR16	RESOL	N	F		
3	20 character \times 4 line, 5 \times 8 dot	0	0	*	0	1	1	-		Sing	gle Chip	Application,	No Slave				

Case4: 40 characters X 1 line, 5 X 8 Font (1/8 duty, cascade mode application) In this mode, COM1~2 switch together, COM3~4, COM5~6, COM7~8, COM9~10, COM11~12, COM13~14, COM15~16, COM17~18, COM19~20, COM21~22, COM23~24, COM25~26, COM27~28, COM29~30 and COM31~32 switch together.

The relationship between Master/Slave output COM&SEG and OLED Panel input COM&SEG show in the following table: (Master/Slave output COM1~32 named Cout1~32. Master/Slave output SEG1~100 named Sout1~100.)

	Master & C	LED Panel	Slave & O	LED Panel
	Master Output	OLED Panel Input	Slave Output	OLED Panel Input
	Cout17,Cout18	COM8	Cout1,Cout2	COM1
	Cout19,Cout20	COM7	Cout3,Cout4	COM2
	Cout21,Cout22	COM6	Cout5,Cout6	COM3
Relationship of COM	Cout23,Cout24	COM5	Cout7,Cout8	COM4
	Cout25,Cout26	COM4	Cout9,Cout10	COM5
	Cout27,Cout28	COM3	Cout11,Cout12	COM6
	Cout29,Cout30	COM2	Cout13,Cout14	COM7
	Cout31,Cout32	COM1	Cout15,Cout16	COM8
	Sout1	SEG100	Sout1	SEG1
	Sout3	SEG98	Sout3	SEG3
	Sout5	SEG96	Sout5	SEG5
Relationship of SEG (Odd Number)				
	Sout95	SEG6	Sout95	SEG95
	Sout97	SEG4	Sout97	SEG97
	Sout99	SEG2	Sout99	SEG99
	Sout2	SEG99	Sout2	SEG2
	Sout4	SEG97	Sout4	SEG4
Deletionship of CEC	Sout6	SEG95	Sout6	SEG6
Relationship of SEG (Even Number)				
	Sout96	SEG5	Sout96	SEG96
	Sout98	SEG3	Sout98	SEG98
	Sout100	SEG1	Sout100	SEG100

Pad Option and Register Option value are shown below:


Case	Resolution	Master							Slave						
		GC	CAS _EN	CAS _MS	CHAR16	RESOL	N	F	GC	CAS _EN	CAS _MS	CHAR16	RESOL	Ν	F
4	40 character ×1 line, 5×8 dot	0	1	1	0	0	0	0	0	1	0	0	0	0	0

Note:

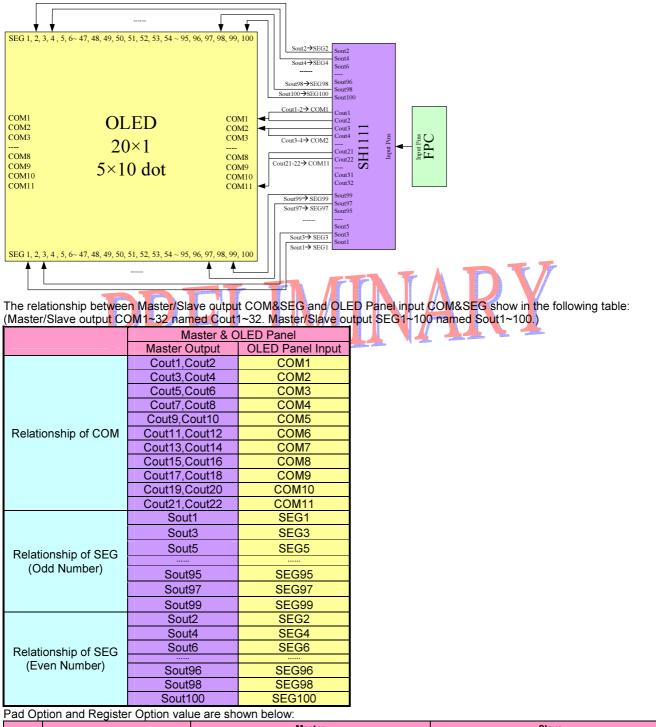
When use this mode, the COM1~32 of master and COM1~32 of slave can not be connect together.

Case5: 40 characters X 2 line, 5 X 8 Font (1/16 duty, cascade mode application) In this mode, COM1~2 switch together, COM3~4, COM5~6, COM7~8, COM9~10, COM11~12, COM13~14, COM15~16, COM17~18, COM19~20, COM21~22, COM23~24, COM25~26, COM27~28, COM29~30 and COM31~32 switch together.

The relationship between Master/Slave output COM&SEG and OLED Panel input COM&SEG show in the following table: (Master/Slave output COM1~32 named Cout1~32. Master/Slave output SEG1~100 named Sout1~100.)

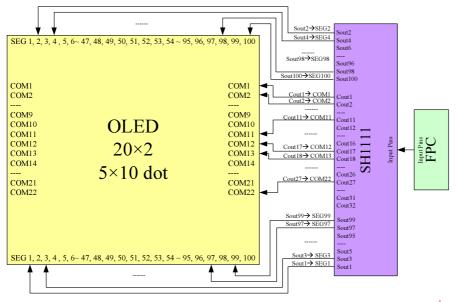
	Master & OLED Panel Slave & OLED Panel										
	Master Output	OLED Panel Input	Slave Output	OLED Panel Input							
	Cout1,Cout2	COM16	Cout1,Cout2	COM1							
	Cout3,Cout4	COM15	Cout3,Cout4	COM2							
	Cout5,Cout6	COM14	Cout5,Cout6	COM3							
	Cout7,Cout8	COM13	Cout7,Cout8	COM4							
	Cout9,Cout10	COM12	Cout9,Cout10	COM5							
	Cout11,Cout12	COM11	Cout11,Cout12	COM6							
	Cout13,Cout14	COM10	Cout13,Cout14	COM7							
Polotionabin of COM	Cout15,Cout16	COM9	Cout15,Cout16	COM8							
	Cout17,Cout18	COM8	Cout17,Cout18	COM9							
	Cout19,Cout20	COM7	Cout19,Cout20	COM10							
	Cout21,Cout22	COM6	Cout21,Cout22	COM11							
	Cout23,Cout24	COM5	Cout23,Cout24	COM12							
	Cout25,Cout26	COM4	Cout25,Cout26	COM13							
	Cout27,Cout28	COM3	Cout27,Cout28	COM14							
	Cout29,Cout30	COM2	Cout29,Cout30	COM15							
	Cout31,Cout32	COM1	Cout31,Cout32	COM16							
	Sout1	SEG100	Sout1	SEG1							
	Sout3	SEG98	Sout3	SEG3							
	Sout5	SEG96	Sout5	SEG5							
Relationship of COMCout15,Cout16COOCout17,Cout18COM8Cout17,Cout18COOCout19,Cout20COM7Cout19,Cout20COMCout21,Cout22COM6Cout21,Cout22COMCout23,Cout24COM5Cout23,Cout24COOCout25,Cout26COM4Cout25,Cout26COMCout29,Cout30COM2Cout29,Cout30COMCout29,Cout30COM2Cout29,Cout30COMCout31,Cout32COM1Cout31,Cout32COMSout1SEG100Sout1SESout5SEG98Sout3SESout95SEG6Sout95SESout97SEG4Sout97SESout4SEG99Sout2SESout4SEG97Sout4SESout6SEG95Sout6SE	SEG95										
	Sout97	SEG4	Sout97	SEG97							
	Sout99	SEG2	Sout99	SEG99							
	Sout2	SEG99	Sout2	SEG2							
	Sout4	SEG97	Sout4	SEG4							
Deletionship of CCC	Sout6	SEG95	Sout6	SEG6							
Relationship of SEG (Even Number)		SEG99 Sout2 SEG2 SEG97 Sout4 SEG4 SEG95 Sout6 SEG6									
	Sout96	SEG5	Sout96	SEG96							
	Sout98	SEG3	Sout98	SEG98							
	Sout100	SEG1	Sout100	SEG100							

Pad Option and Register Option value are shown below:


		Master									Slave								
Case	Resolution	GC	CAS _EN	CAS _MS	CHAR16	RESOL	N	F	GC	CAS _EN	CAS _MS	CHAR16	RESOL	N	F				
5	40 character ×2 line, 5×8 dot	0	1	1	0	0	1	-	0	1	0	0	0	1	-				

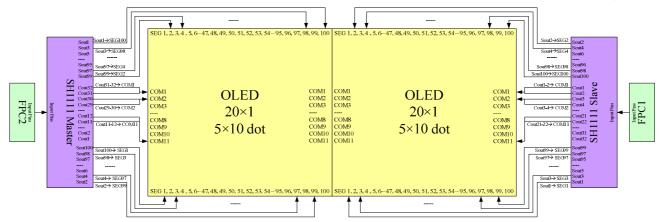
Note:

When use this mode, the COM1~32 of master and COM1~32 of slave can not be connect together.


Case6: 20 characters X 1 line, 5 X 10 Font (1/11 duty) In this mode, COM1~2 switch together, COM3~4, COM5~6, COM7~8, COM9~10, COM11~12, COM13~14, COM15~16, COM17~18, COM19~20, COM21~22, COM23~24, COM25~26, COM27~28, COM29~30 and COM31~32 switch together.

						Master							Slave			
C	ase	Resolution	GC	CAS _EN	CAS _MS	CHAR16	RESOL	Ν	F	GC	CAS _EN	CAS _MS	CHAR16	RESOL	N	F
	6	20 character×1 line,5×10 dot	0	0	*	0	0	0	1		Sing	gle Chip	Application,	No Slave		

Case7: 20 characters X 2 line, 5 X 10 Font (1/22 duty)


The relationship between Master/Slave output COM&SEG and OLED Panel input COM&SEG show in the following table: (Master/Slave output COM1~32 named Cout1~32. Master/Slave output SEG1~100 named Sout1~100.)

	Master & OLED Panel								
	Master Output	OLED Panel Input							
	Cout1	COM1							
	Cout2	COM2							
	Cout3	COM3							
	Cout9	COM9							
	Cout10	COM10							
	Cout10	COM10							
Relationship of COM	COM17	COM12							
	COM18	COM12							
	COM19	COM14							
	COM25	COM20							
	COM26	COM21							
	COM27	COM22							
	Sout1	SEG1							
	Sout3	SEG3							
Relationship of SEG	Sout5	SEG5							
(Odd Number)									
	Sout95	SEG95							
	Sout97	SEG97							
	Sout99	SEG99							
	Sout2	SEG2							
	Sout4	SEG4							
Relationship of SEG	Sout6	SEG6							
(Even Number)									
(Even Number)	Sout96	SEG96							
	Sout98	SEG98							
Pad Option and Pagista	Sout100	SEG100							

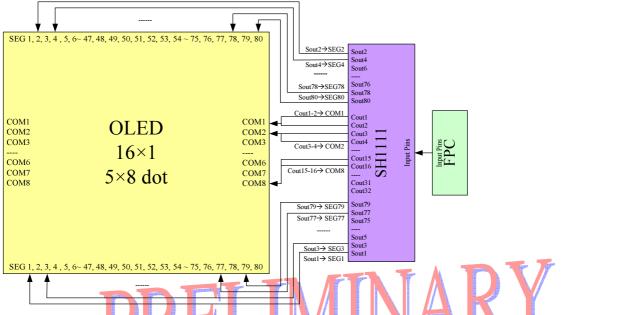
					Master							Slave			
Case	Resolution	GC	CAS _EN	CAS _MS	CHAR16	RESOL	Ν	F	GC	CAS _EN	CAS _MS	CHAR16	RESOL	N	F
7	20 character×2 line,5×10 dot	0	0	*	0	1	0	1		Sin	gle Chip	Application,	No Slave		

Case8: 40 characters X 1 line, 5 X 10 Font (1/11 duty, Cascade application) In this mode, COM1~2 switch together, COM3~4, COM5~6, COM7~8, COM9~10, COM11~12, COM13~14, COM15~16, COM17~18, COM19~20, COM21~22, COM23~24, COM25~26, COM27~28, COM29~30 and COM31~32 switch together.

The relationship between Master/Slave output COM&SEG and OLED Panel input COM&SEG show in the following table: (Master/Slave output COM1~32 named Cout1~32. Master/Slave output SEG1~100 named Sout1~100.)

		LED Panel		LED Panel
	Master Output	OLED Panel Input	Slave Output	OLED Panel Input
	Cout11,Cout12	COM11	Cout1,Cout2	COM1
	Cout13,Cout14	COM10	Cout3,Cout4	COM2
	Cout15,Cout16	COM9	Cout5,Cout6	COM3
	Cout17,Cout18	COM8	Cout7,Cout8	COM4
	Cout19,Cout20	COM7	Cout9,Cout10	COM5
Relationship of COM	Cout21,Cout22	COM6	Cout11,Cout12	COM6
	Cout23,Cout24	COM5	Cout13,Cout14	COM7
	Cout25,Cout26	COM4	Cout15,Cout16	COM8
	Cout27,Cout28	COM3	Cout17,Cout18	COM9
	Cout29,Cout30	COM2	Cout19,Cout20	COM10
	Cout31,Cout32	COM1	Cout21,Cout22	COM11
	Sout1	SEG100	Sout1	SEG1
	Sout3	SEG98	Sout3	SEG3
B 1 // 11 / 050	Sout5	SEG96	Sout5	SEG5
Relationship of SEG (Odd Number)				
	Sout95	SEG6	Sout95	SEG95
	Sout97	SEG4	Sout97	SEG97
	Sout99	SEG2	Sout99	SEG99
	Sout2	SEG99	Sout2	SEG2
	Sout4	SEG97	Sout4	SEG4
Polotionship of SEC	Sout6	SEG95	Sout6	SEG6
Relationship of SEG (Even Number)				
	Sout96	SEG5	Sout96	SEG96
	Sout98	SEG3	Sout98	SEG98
	Sout100	SEG1	Sout100	SEG100

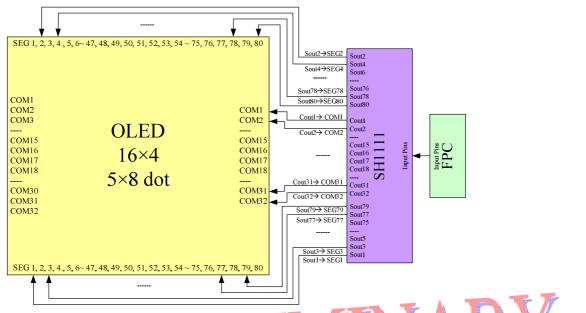
Pad Option and Register Option value are shown below:


					Master							Slave			
Case	Resolution	GC	CAS _EN	CAS _MS	CHAR16	RESOL	N	F	GC	CAS _EN	CAS _MS	CHAR16	RESOL	Ν	F
8	40 character×1 line,5×10 dot	0	1	1	0	0	0	1	0	1	0	0	0	0	1
Mater															

Note:

When use this mode, the COM1~32 of master and COM1~32 of slave can not be connect together.

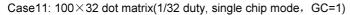
Case9: 16 characters X 1 line, 5 X 8 Font (1/8 duty, single chip mode) In this mode, COM1~2 switch together, COM3~4, COM5~6, COM7~8, COM9~10, COM11~12, COM13~14, COM15~16, COM17~18, COM19~20, COM21~22, COM23~24, COM25~26, COM27~28, COM29~30 and COM31~32 switch together.

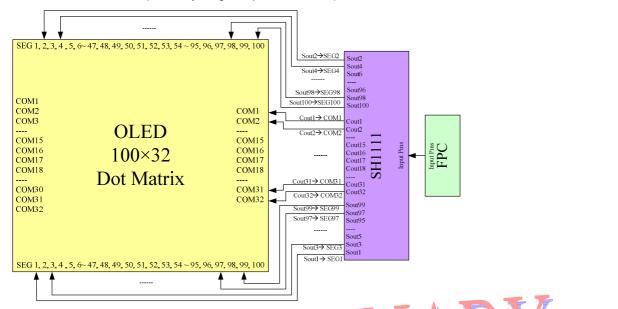

The relationship between Master/Slave output COM&SEG and OLED Panel input COM&SEG show in the following table: (Master/Slave output COM1~32 named Cout1~32, Master/Slave output SEG1~100 named Sout1~100.)

	Master & OLED Panel								
	Master Output	OLED Panel Input							
	Cout1,Cout2	COM1							
	Cout3,Cout4	COM2							
	Cout5,Cout6	COM3							
Relationship of COM	Cout7,Cout8	COM4							
	Cout9,Cout10	COM5							
	Cout11,Cout12	COM6							
	Cout13,Cout14	COM7							
	Cout15,Cout16	COM8							
	Sout1	SEG1							
	Sout3	SEG3							
Deletionship of 050	Sout5	SEG5							
Relationship of SEG (Odd Number)									
	Sout75	SEG75							
	Sout77	SEG77							
	Sout79	SEG79							
	Sout2	SEG2							
	Sout4	SEG4							
Relationship of SEG (Even Number)	Sout6	SEG6							
	Sout76	SEG76							
	Sout78	SEG78							
	Sout80	SEG80							

					Master							Slave			
Case	Resolution	GC	CAS _EN	CAS _MS	CHAR16	RESOL	N	F	GC	CAS _EN	CAS _MS	CHAR16	RESOL	N	F
9	16 character ×1 line,5×8 dot	0	0	*	1	0	-	-		Sing	gle Chip	Application,	No Slave		

Case10: 16 characters X 4 line, 5 X 8 Font (1/32 duty, single chip mode)

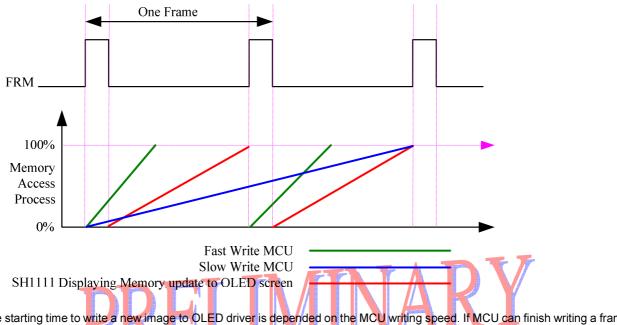



The relationship between Master/Slave output COM&SEG and OLED Panel input COM&SEG show in the following table: (Master/Slave output COM1~32 named Cout1~32. Master/Slave output SEG1~100 named Sout1~100.)

	Master & OLED Panel							
	Master Output	OLED Panel Input						
	Cout1	COM1						
	Cout2	COM2						
	Cout3	COM3						
	Cout4	COM4						
Relationship of COM								
	Cout29	COM29						
	Cout30	COM30						
	Cout31	COM31						
	Cout32	COM32						
	Sout1	SEG1						
	Sout3	SEG3						
	Sout5	SEG5						
Relationship of SEG (Odd Number)		•••••						
	Sout75	SEG75						
	Sout77	SEG77						
	Sout79	SEG79						
	Sout2	SEG2						
	Sout4	SEG4						
Deletionship of CEC	Sout6	SEG6						
Relationship of SEG (Even Number)								
	Sout76	SEG76						
	Sout78	SEG78						
	Sout80	SEG80						

					Master							Slave			
Cas	e Resolution	GC	CAS _EN	CAS _MS	CHAR16	RESOL	Ν	F	GC	CAS _EN	CAS _MS	CHAR16	RESOL	N	F
10	16 character ×4 line,5×8 dot	0	0	*	1	1	1	-		Sing	gle Chip	Application,	No Slave		

The relationship between Master/Slave output COM&SEG and OLED Panel input COM&SEG show in the following table: (Master/Slave output COM1~32 named Cout1~32. Master/Slave output SEG1~100 named Sout1~100.)


	Master & OLED Panel								
	Master Output	OLED Panel Input							
	Cout1	COM1							
	Cout2	COM2							
	Cout3	COM3							
	Cout4	COM4							
Relationship of COM									
	Cout29	COM29							
	Cout30	COM30							
	Cout31	COM31							
	Cout32	COM32							
	Sout1	SEG1							
	Sout3	SEG3							
	Sout5	SEG5							
Relationship of SEG (Odd Number)									
	Sout95	SEG95							
	Sout97	SEG97							
	Sout99	SEG99							
	Sout2	SEG2							
	Sout4	SEG4							
Relationship of SEG (Even Number)	Sout6	SEG6							
	Sout96	SEG96							
	Sout98	SEG98							
	Sout100	SEG100							

					Master							Slave			
Case	Resolution	GC	CAS _EN	CAS _MS	CHAR16	RESOL	Ν	F	GC	CAS _EN	CAS _MS	CHAR16	RESOL	N	F
11	100×32 dot matrix (Graphic Mode)	1	0	*	*	*	-	-		Sin	gle Chip	Application,	No Slave		

FRM Synchronization

FRM synchronization signal can be used to prevent tearing effect.

The starting time to write a new image to OLED driver is depended on the MCU writing speed. If MCU can finish writing a frame image within one frame period, it is classified as fast write MCU. For MCU needs longer writing time to complete (more than one frame but within two frames), it is a slow write one.

For fast write MCU: MCU should start to write new frame of ram data just after rising edge of FRM pulse and should be finished well before the rising edge of the next FRM pulse.

For slow write MCU: MCU should start to write new frame ram data after the falling edge of the 1st FRM pulse and must be finished before the rising edge of the 3rd FRM pulse.

The Oscillator Circuit

This is a RC type oscillator (Figure. 13) that produces the display clock. The oscillator circuit is only enabled when CLS = "H". When CLS = "L", the oscillation stops and the display clock is inputted through the CL terminal.

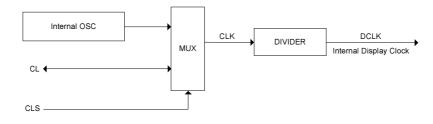


Figure. 13

DC- DC Voltage Converter / Charge Pump Regulator

This block accompanying only 2 external capacitors, is used to generate a 6.4V~12.0V voltage for OLED panel. This regulator can be turned ON/OFF by Pad Option VPPS.

VPPS PAD VALUE	DISPLAY ON/OFF STATUS	Description
0	9	Sleep mode
o		External VPP must be used
1	0	Sleep mode
1	1	Built-in DC-DC is used, Normal Display

Reset Circuit

When power is turned ON, SH1111 is initialized automatically by an internal reset circuit. The following items are set (default) during the initialization. The busy flag(BF) is kept in the busy state until the initialization. The busy state lasts for 10ms after VDD1 rises to 4.5V.

- Display clear.
 Function set:
- - DL = 1: 8-bit interface data.
 - N = 0: 1-line display.
 - F = 0: 5*8 dot character font.
- 3. Display ON/OFF control:
 - D = 0: Display off.
 - C = 0: Cursor off.
- B = 0: Blinking off
- 4. Entry mode set:
 - I/D = 1: Increase by 1.
 - S = 0: No shift.
- 5. All register in Command Table2 are set to POR Value. Command Table2 POR Value is shown below.

Function	Control bit	Remarks
Divide Ratio/Oscillator Frequency Data Set	Oscillator Frequency = 0101 Divide Ratio = 0001	
Dis-charge /Pre-charge Period Mode Set	PDCVS=0: Dis-charge Period = 0010 Pre-charge Period = 0010 PDCVS=1: Dis-charge Period = 1111 Pre-charge Period = 1111	2 DCLKs 2 DCLKs 15 DCLKs 15 DCLKs
VCOM Deselect Level Data Set	PDCVS = 0: VCOM = 35H PDCVS = 1: VCOM = 40H	a different a distance
Contrast Control Set	PDCVS = 0: Contrast = 80H PDCVS = 1: Contrast = FFH	
Graphic Vertical scrolling set	Vertical scrolling = 0000	Start Line: COM1
Graphic duty set	Graphic duty = 1001	Normal Display
VPP Voltage Set	VPP[1:0] = 11	VPP = 12.0V
SEG Direction Set	SHL = 0	SEG1→SEG100
COM Direction Set	CMS = 0	COM1→COM32
Pump Times Set	DCS = 0	Pump 3 times
Software Set Font Table Enable	FTE = 0	Software set font table disable
Software Font Table Select	FTS[1:0] = 00	Font Table 1
Blinking Duty Set	BD[2:0] = 010	300ms

Commands

The SH1111 uses a combination of RS, $\overline{RD}(E)$ and $\overline{WR}(R/\overline{W})$ signals to identify data bus signals. As the chip analyzes and executes each command using internal timing clock only regardless of external clock, its processing speed is very high and its busy check is usually not required. The 8080 series microprocessor interface enters a read status when a low pulse is input to

the RD pad and a write status when a low pulse is input to the WR pad. The 6800 series microprocessor interface enters a read status when a high pulse is input to the R/\overline{W} pad and a write status when a low pulse is input to this pad. When a high pulse is input to the E pad, the command is activated. (For timing, see AC Characteristics.). Accordingly, in the command explanation and command table, RD (E) becomes 1 (HIGH) when the 6800 series microprocessor interface reads status of display data. This is an only different point from the 8080 series microprocessor interface.

Taking the 8 bit 8080 series, microprocessor interface as an example command will explain below.

When the serial interface is selected, input data starting from D7 in sequence.

Command Set

1. Clear Display: (01h)

Clear display writes space code 20H (character pattern for character code 20H must be a blank pattern) into all DDRAM addresses. It then sets DDRAM address 0 into the address counter, and returns the display to its original status if it was shifted. In other words, the display disappears and the cursor or blinking goes to the left edge of the display (in the first line if 2 lines are displayed). It also sets I/D to 1 (increment mode) in entry mode (I/D="1"). S of entry mode does not change.

	RS	$\overline{WR}(R/\overline{W})$	D7	D6	D5	D4	D3	D2	D1	DO		\mathbf{V}
	0	0	ò	0	0	0	0	0	0	1		
2.	Return	n Home: (0 <mark>2</mark> H	– 03H)					VI				atio

2. Return Home: (02H – 03H)

It sets Display Data RAM Address "00H" in Address Counter and the display returns to its original position. The cursor or blink goes to the most-left side of the display (to the 1st line if 2 lines are displayed). The contents of the Display Data RAM do not change.

RS	\overline{WR} (R/ \overline{W})	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	0	1	*

*: Do not care (0 or 1)

3. Entry Mode Set: (04H - 07H)

During writing and reading data, it defines cursor moving direction and shifts the display.

RS	$\overline{WR}(R/\overline{W})$	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	0	1	I/D	S

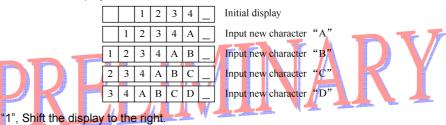
I/D: The Increment / Decrement of DDRAM address (cursor or blink).

When I/D = "1", the DDRAM Address is incremented by "1" when a character code is written into or read from the DDRAM. An increment of 1 will move the cursor or blinking one step to the right. (POR)

When I/D = "0", the DDRAM is decremented by 1 when a character code is written into or read from the DDRAM. A decrement of 1 will move the cursor or blinking one step to the left.

Note: CGRAM operates the same as DDRAM, when read from or write to CGRAM.

S: Shift Enter Display Control bit


Ex2: I/D = "0", S =

This bit is used to shift the entire display.

When S = "1" and DDRAM write operation, the entire display is shifted to the right (when I/D = "0") or left (when I/D = "1").

When S = "0" or DDRAM read (CGRAM read/write) operation, the display is not shifted. (POR)

Ex1: I/D = "1", S = "1", Shift the display to the left.

1	2	3	4	_		
	1	2	3	4	Α	
		1	2	3	В	Α
			1	<u>2</u>	С	в
				1	D	С

Initial display

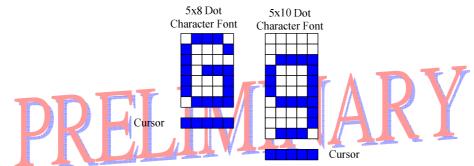
Input new character	"A"
Input new character	"В"
Input new character	"C"
Input new character	"D"

4. Display ON/OFF Control: (08H - 0FH)

The Display On / OFF Instruction is used to turn the display / Cursor / Blink ON / OFF. The controlling bits are D, C and B.

RS	\overline{WR} (R/ \overline{W})	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	0	1	D	С	В

D: Display On/Off bit


When D = "1", the entire display is turned ON.

When D = "0", the entire display is turned OFF and the display data is stored in the DDRAM. The display data can be instantly displayed by setting D to "1". (POR)

C: Cursor Display Control bit

When C = "1", the cursor is displayed. In a 5 x 8 dot character font, the cursor is displayed via the 5 dots in the 8th line. In a 5 x 10 dot character font, it is displayed via 5 dots in the 11th line. (POR)

When C = "0", the cursor display is disabled. During a Display Data Write, the function of I/D and others will not be altered even if the cursor is not present. Please refer to the figure below.

B: Cursor Blinking Control bit

When $B = 0^{\circ}$, the cursor character blink turn off. (POR)

When B = '1'', the character specified by the cursor blinks. The blinking feature is displayed by switching between the blank dots and the displayed character at a speed of 409.6ms intervals when the fcp or fosc is 250kHz. Please refer to the figure below.

Note: Figures 1 and 2 are alternately displayed

The cursor and the blinking can be set to display at the same time. The blinking frequency depends on the fosc.

V0.2

5. Display/Cursor Shift:

RS	\overline{WR} (R/ \overline{W})	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	0	1	S/C	R/L	*	*

*: Do not care (0 or 1)

S/C: Shift cursor to left or right

R/L: Shift display to left or right

This instruction is used to shift the cursor or display position to the left or right without writing or reading the Display Data. This function is used to correct or search the display data. Please refer to the table below.

In a 2-line Display, the cursor moves to the 2nd line when it passes the 40th digit of the 1st line. The 1st and 2nd line displays will shift at the same time.

When the displayed data is shifted repeatedly, each line moves only horizontally. The second line display does not shift into the first line position.

The Address Counter (AC) contents will not change if the only action performed is a Display Shift. When S/L=0, the direction will reverse.

S/C	R/L	Description	Address Counter	
0	0	Shift cursor to the left	AC = AC – 1	
0	1	Shift cursor to the right	AC = AC + 1	
1	0	Shift display to the left. Cursor follows the display shift	AC = AC	57
1	1	Shift display to the right. Cursor follows the display shift	AC = AC	
		PKELIVII	AN	

6. Function Set:

The Function Set Instruction has 4 controlling 5 bits, namely: DL, N, F and FT[1:0]. Please refer to the table below.

ĺ	RS	\overline{WR} (R/ \overline{W})	D7	D6	D5	D4	D3	D2	D1	D0
I	0	0	0	0	1	NL	Ν	F	*	*

*: Do not care (0 or 1)

NL: Interface Data Length Control Bit

This is used to select the interface data length from 4-bit bus mode or 8-bit bus mode.

When DL= "1", the data is sent or received in 8-bit length via the DB0 to DB7 (for an 8-Bit Data Transfer). (POR)

When DL= "0", the data is sent or received in 4-bit length via DB4 to DB7 (for a 4-Bit Data Transfer). When the 4-bit data length is selected, the data must be sent or received twice.

N: Number of Display Line Bit

This is used to set the number of display lines.

When N = "1", the 2-line display is selected.

When N = "0", the 1-line display is selected. (POR)

F: Display Character Font Type Set

This is used to set the character font set.

When F = "0", the 5 x 8 dot character font is selected. (POR)

When F = "1", the 5 x 10 dot character font is selected.

It must be noted that the character font setting must be performed at the head of the program before executing any instructions other than the Busy Flag and Address Instruction. Otherwise, the Function Set Instruction cannot be executed unless the interface data length is changed.

RESOL	N	F	No. of Display Lines	Character Font	Duty Factor
0	0	0		5×8 dots	1/8
0	0	1	1	5×10 dots	1/11
0	1	Х	2	5×8 dots	1/16
1	0	0	2(Note1)	5×8 dots	1/32
1	0	1	2(Note2)	5×10 dots	1/22
1	1	Х	4	5×8 dots	1/32

Note1: This case, the 1st DDRAM address is "00H~13H" and 2nd DDRAM address is "14H~27H". And "COM1~COM8" output 1st line, "COM17~COM24" output 2nd line.

Note2: This case, the 1st DDRAM address is "00H~13H" and 2nd DDRAM address is "14H~27H". And "COM1~COM11" output 1st line, "COM17~COM27" output 2nd line.

7. Character Generator RAM Address Set (Character Mode) or GDDRAM Page Address Set (Graphic Mode):

When select Character Mode (G/C=0), It sets Character Generator RAM Address ACG[5:0] to the Address Counter. This instruction makes CGRAM data available from MPU.

RS	$\overline{WR}(R/\overline{W})$	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	ACG5	ACG4	ACG3	ACG2	ACG1	ACG0

Note: ACG is the CGRAM Address

When select graphic mode (Pad option G/C=1), It sets Page Address PAG to the Address Counter.

This instruction makes GDDRAM data available from MPU.

RS	\overline{WR} (R/ \overline{W})	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	0	0	0	PAG1	PAG0

PAG1	PAG0	Page Address	
0	0	Page0 (POR)	
0	1	Page1	THE FLADY
1	0	Page2	
1	1	Page3	
Note: PAG	is the P	age Address	

8. DDRAM Address Set (Character Mode) or GDDRAM Column Address Set (Graphic Mode):

When select Character Mode (G/C=0), this instruction is used to set the DDRAM Address binary ADD[6:0] into the Address Counter. The data is written to or read from the MPU for the DDRAM. If 1-line display is selected (N="0"), then ADD[6:0] can be 00H to 4FH. When the 2-line display is selected, then ADD[6:0] can be "00H" to "27H" for the first line and "40H" to "67H" for the second line. During writing and reading data, it defines cursor moving direction and shifts the display.

RS	\overline{WR} (R/ \overline{W})	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	ADD6	ADD5	ADD4	ADD3	ADD2	ADD1	ADD0

Note:

(1)ADD = DDRAM Address

(2)The DDRAM address not used is forbidden to operation. When N = 0, the DDRAM address is 00H~4FH, the DDRAM address not used 50H~7FH is forbidden to write or read. When N = 1, the DDRAM address is 00H~27H and 40H~67H. The DDRAM Address not used 28H~3FH and 68H~7FH is forbidden to write or read.

When select Graphic Mode (G/C=0), this instruction is used to set the column address of display RAM. When the microprocessor repeats to access to the display RAM, the column address counter is incremented during each access until address 99 is accessed. The page address is not changed during this time.

RS	\overline{WR} (R/ \overline{W})	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	CAD6	CAD5	CAD4	CAD3	CAD2	CAD1	CAD0

A7-A0 sets the column address of Graphic DDRAM.

		colum	auure	55 01 0	aprilo	DDRAI	VI.		
D7	D6	D5	D4	D3	D2	D1	D0	Column address	
1	CAD6	CAD5	CAD4	CAD3	CAD2	CAD1	CADO		
1	0	0	0	0	0	0	0	1	
1	0	0	0	0	0	0	1	2	and a second a second a second a second a second a second a
1	0	0	0	0	0	and the second second	0	3	
1	0	0	0	0	0	1	1	4	
1	0	0	0	0	1	0	0	5	
				•••					
1	1	0	1	1	1	1	1	96	
1	1	1	0	0	0	0	0	97	
1	1	1	0	0	0	0	1	98	
1	1	1	0	0	0	1	0	99	
1	1	1	0	0	0	1	1	100	
	11	100100)-11111	1111(0>	E4-0xF	-F)		No Used	

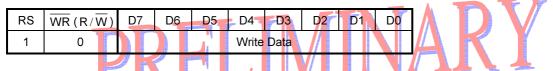
Note:

(1)CAD = Column Address

(2)The column address not used E4H~FFH is forbidden to write or read.

9. Busy Flag and Address Counter Read:

This instruction is used to read the Busy Flag (BF) to indicate if SH1111 is internally operating on a previously received instruction. If BF is set to "1", then the internal operation is in progress and the next instruction will not be accepted. If the BF is set to "0", then the previously received instruction has been executed and the next instruction can be accepted and processed. It is important to check the BF status before proceeding to the next write operation. The value of the Address Counter in binary AC[6:0] is simultaneously read out. This Address Counter is used by both the CGRAM and the DDRAM and its value is determined by the previous instruction. The contents of the address are the same as for the instructions – Set CGRAM Address.


RS	$\overline{WR}(R/\overline{W})$	D7	D6	D5	D4	D3	D2	D1	D0
0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0

Notes:

- 1. BF=Busy Flag
- 2. AC=Address Counter

10. Write Data to CGRAM / DDRAM / GDDRAM Instruction:

This instruction writes 8-bit binary data – Data[7:0] to the CGRAM or the DDRAM or the GDDRAM. The previous CGRAM or DDRAM or GDDRAM Address setting determines whether a data is to be written into the CGRAM or the DDRAM or the GDDRAM. After the write process is completed, the address is automatically incremented or decremented by 1 in accordance with the Entry Mode instruction. It must be noted that the Entry Mode instruction also determines the Display Shift.

11. Read Data from CGRAM / DDRAM / GDDRAM Instruction:

This instruction reads the 8-bit binary data – Data [7:0] from the CGRAM or the DDRAM or the GDDRAM. The Set CGRAM Address or Set DDRAM Address or Set GDDRAM Address Set Instruction must be executed before this instruction can be performed, otherwise, the first Read Data will not be valid.

RS	$\overline{WR}(R/\overline{W})$	D7	D6	D5	D4	D3	D2	D1	D0
1	1				Read	Data			

When the Read Instruction is executed in series, the next address data is normally read from the Second Read. There is no need for the Address Set Instruction to be performed before this Read instruction when using the Cursor Shift Instruction to shift the cursor (Reading the DDRAM). The Cursor Shift Instruction has the same operation as that of the Set the DDRAM Address Instruction.

After a Read instruction has been executed, the Entry Mode is automatically incremented or decremented by 1. It must be noted that regardless of the Entry Mode, the Display Shift is not executed.

After the Write instruction to either the CGRAM or DDRAM has been performed, the Address Counter is automatically increased or decreased by 1. The RAM data selected by the Address Counter cannot be read out at this time even if the Read Instructions are executed. Therefore, in order to correctly read the data, the following procedure has suggested:

1. Execute the Address Set or Cursor Shift (only with DDRAM) Instruction

2. Just before reading the desired data, execute the Read Instruction from the second time the Read Instruction has been sent.

12. Command Table2 Entry Instruction: (Double Bytes Command)

This instruction control the command table to command table2: (EFH)

RS	$\overline{WR}(R/\overline{W})$	D7	D6	D5	D4	D3	D2	D1	D0		
0	0	1	1	1	0	1	1	1	1		
Entry Command Table2 Sequence: (FAH)											
RS	\overline{WR} (R/ \overline{W})	D7	D6	D5	D4	D3	D2	D1	D0		
0	0	1	1	1	1	1	0	1	0		

This is a double bytes command. In order to enter command table2, user must send the following two commands together: 1st time sends command 0xEF, 2nd time sends command 0xFA.

The following example can enter command table2:

WriteCommand(0xEF);

WriteCommand(0xFA);

The following example can not enter command table2:

WriteCommand(0xEF);

WriteCommand(0xXX);

WriteCommand(0xFA); Note: XX = select one data from '0' ~ 'F'

13. Command Table2 Exit Instruction: (Double Bytes Command)

This instruction control the command table back to command table1: (FEH)

RS	$\overline{WR}(R/\overline{W})$	D7	D6	D5	D4	D3	D2	D1	D0	
0	0	1	1	1	1	1	1	1	0	
Exit Command Table2 Sequence: (EBH)										

RS	$\overline{WR}(R/\overline{W})$	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	1	1	0	1	1	1	0

This is a double bytes command. In order to exit command table2, user must send the following two commands together: 1st time sends command 0xFE, 2nd time sends command 0xEB.

The following example can exit command table2:

WriteCommand(0xFE);

WriteCommand(0xEB);

The following example can not exit command table2:

WriteCommand(0xFE);

WriteCommand(0xXX);

WriteCommand(0xEB);

Note: XX = select one data from '0' ~ 'F'

0

14. Set Display Clock Divide Ratio/Oscillator Frequency: (Double Bytes Command)

This command is used to set the frequency of the internal display clocks (DCLKs). It is defined as the divide ratio (Value from 1 to 16) used to divide the oscillator frequency. POR is 1. Frame frequency is determined by divide ratio, number of display clocks per row, MUX ratio and oscillator frequency.

A2

A1

Ao

	RS	$\overline{WR}(R/\overline{W})$	D7	D6	D5	D4	D3	D2	D1	D0
	0	0	0	0	0	1	0	0	0	0
1	Divide	Ratio/Oscillato	r Frequ	iency D	ata Se	t: (00H	– FFH)			
	RS	$\overline{WR}(R/\overline{W})$	D7	D6	D5	D4	D3	D2	D1	D0

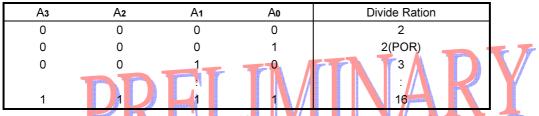
A5

A4

Aз

■ Divide Ratio/Oscillator Frequency Mode Set: (10H)

A7


 $A_3 - A_0$ defines the divide ration of the display clocks (DCLK).

A6

When A[3:0] = 0000, Divide Ration = 2.

0

When A[3:0] \neq 0000, Divide Ration = A[3:0]+1.

A7 - A4 sets the oscillator frequency. Oscillator frequency increase with the value of A[7:4] and vice versa.

A7	A6	A5	A4	Oscillator Frequency of fosc
0	0	0	0	-25%
0	0	0	1	-20%
0	0	1	0	-15%
0	0	1	1	-10%
0	1	0	0	-5%
0	1	0	1	fosc (POR)
0	1	1	0	+5%
0	1	1	1	+10%
1	0	0	0	+15%
1	0	0	1	+20%
1	0	1	0	+25%
1	0	1	1	+30%
1	1	0	0	+35%
1	1	0	1	+40%
1	1	1	0	+45%
1	1	1	1	+50%

15. Set Dis-charge / Pre-charge Period: (Double Bytes Command)

This command is used to set the duration of the Pre-charge/Discharge period. The interval is counted in number of DCLK. POR is 2 DCLKs.

	arge / Dis-cha	ige i ei			(2011)					_	
RS	$\overline{WR}(R/\overline{W})$	D7	D6	D5	D4	D3	D2	D1	D0		
0	0	0	0	1	0	0	0	0	0		
■ Pre-ch	arge/Dis-charg	je Peric	od Data	Set: (0	0H – F	FH)					
RS	$\overline{WR}(R/\overline{W})$	D7	D6	D5	D4	D3	D2	D1	D0		
0	0	A7	Ae	A5	A4	Аз	A2	A1	Ao		
Pre-char	ge Period Adju	ıst: (A3	– A0)								-
A	з A	2	ŀ	\ 1		Ao		Pre-	charge	Period	
0	C)		0		0			Not	e	
0	C)		0		1		1 DCLKs			
0	C)		1		0 2 DCLKs		_Ks			
				:		:					
1	1			1		0			14 DC	LKs	
1	1			1		1		2100 L	15 DC	LKs	KT
Dis-char	ge Peri <mark>od Adj</mark> u	st: (A7	– <mark>A4</mark>)								
A	7 A	.6	ŀ	\ 5		A4		Dis-	charge	Period	
0				0	<i>,</i>	0			INVA	LID	and the second second
0	C			0			anti continue antificitio	ites stillin	1 DCL	_Ks	
0	rafficilities)		1		0			2 DCI	_Ks	
				:					:		
1	1			1		0			14 DC	LKs	
1	1			1		1			15 DC	LKs]

■ Pre-charge / Dis-charge Period Mode Set: (20H)

Note:

When set A[3:0]=0, the period for display will increase 2 DCLKs. And there is no pre-charge period so that it will save power consumption.

16. Set VCOM Deselect Level: (Double Bytes Command)

This command is to set the common pad output voltage level at deselect stage.

■ VCOM Deselect Level Mode Set: (30H)

RS	$\overline{WR}(R/\overline{W})$	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	1	1	0	0	0	0

■ VCOM Deselect Level Data Set: (00H – FFH)

0 0 A7 A6 A5 A4 A3 A2	A1	Ao

VCOMH = β1 X VREF= (0.430+ A[7:0] X 0.006415) X VREF

$COMH = p1 \land VREF = (C$	0.430+ A[7.0] X 0.0064 I	J) A VREF		
A[7:0]	β1	A[7:0]	β1	
00H	0.430	20H	0.635	
01H	0.436	21H	0.642	
02H	0.443	22H	0.648	
03H	0.449	23H	0.655	
04H	0.456	24H	0.661	
05H	0.462	25H	0,667	
06H	0.468	26H	0.674	
07H 🚽 🚬	0,475	27 H	0.680	
08H	0.481	28H	0.687	
09Н 🗾	0.488	29H	0.693	
0AH	0.494	2AH	0.699	1 (Lines
0ВН 📕 -	0.501	2BH	0.706	
0CH	0.507	2CH	0.712	
0DH	0.513	2DH	0.719	
0EH	0.520	2EH	0.725	
0FH	0.526	2FH	0.732	
10H	0.533	30H	0.738	
11H	0.539	31H	0.744	
12H	0.545	32H	0.751	
13H	0.552	33H	0.757	
14H	0.558	34H	0.764	
15H	0.565	35H	0.770	
16H	0.571	36H	0.776	
17H	0.578	37H	0.783	
18H	0.584	38H	0.789	
19H	0.590	39H	0.796	
1AH	0.597	3AH	0.802	
1BH	0.603	3BH	0.808	
1CH	0.610	3CH	0.815	
1DH	0.616	3DH	0.821	
1EH	0.622	3EH	0.828	
1FH	0.629	3FH	0.834	
40H – FFH	1			

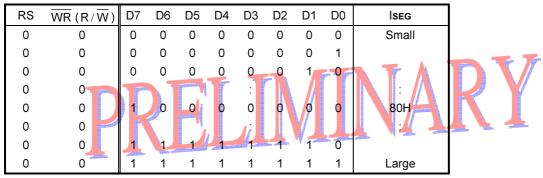
17. Set Contrast Control Register: (Double Bytes Command)

This command is to set contrast setting of the display. The chip has 256 contrast steps from 00 to FF. The segment output current increases as the contrast step value increases.

Segment output current setting: Iseg = $\alpha/256$ X IREF X scale factor

Where: α is contrast step; IREF is reference current equals to 18.75µA; Scale factor = 16.

■ The Contrast Control Mode Set: (40H)


When this command is input, the contrast data register set command becomes enabled. Once the contrast control mode has been set, no other command except for the contrast data register command can be used. Once the contrast data set command has been used to set data into the register, then the contrast control mode is released.

RS	$\overline{WR}(R/\overline{W})$	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	1	0	0	0	0	0	0

■ Contrast Data Register Set: (00H – FFH)

By using this command to set eight bits of data to the contrast data register, the OLED segment output assumes one of the 256 current levels.

When this command is input, the contrast control mode is released after the contrast data register has been set.

ARY

18. VPP Voltage & Com/Segment Direction Set: (Double Bytes Command)

This instruction is used to set the VPP Voltage, Com/Segment data direction and DC-DC pump mode. (50H)

RS	\overline{WR} (R/ \overline{W})	D7	D6	D5	D4	D3	D2	D1	D0		
0	0	0	1	0	1	0	0	0	0		

■ VPP Voltage & Com/Segment Direction Set:

RS	\overline{WR} (R / \overline{W})	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	CMS	SHL	0	DCS	VPP1	VPP0

VPP[1:0]: This two bits is used to set VPP voltage.

The voltage of VPP set refers to the table below.

VPP1	VPP0	VPP Voltage(V)
0	0	6.4
0	1	8.0
1	0	9.0
1	1	12.0 (POR)

DCS: This bit is used to select DC-DC pump mode. When DCS = 0, Pump 3 times mode will be selected. (POR)

When DCS = 1, Pump 2 times mode will be selected.

SHL: This bit is used to set SEG direction. When SHL = 0, the data direction is SEG1 -> SEG100 (POR)

When SHL = 1, the data direction is SEG100 -> SEG1

CMS: This bit is used to set COM direction.

When CMS = 0, the scan direction is COM1 -> COM32 (POR) When CMS = 1, the scan direction is COM32 -> COM1

19. Graphic Vertical Scrolling: (Double Bytes Command)

This command is to set Graphic Vertical Scrolling (Graphic Mode Only).

Graphic Vertical Scrolling: (60H)

RS	\overline{WR} (R/ \overline{W})	D7	D6	D5	D4	D3	D2	D1	D0		
0	0	0	1	1	0	0	0	0	0		
Graphic Vertical Scrolling:											
RS	$\overline{WR}(R/\overline{W})$	D7	D6	D5	D4	D3	D2	D1	D0		
0	0	0	0	0	Vertical Scrolling						

■ Vertical Scrolling Control: This instruction setting the COM0 start point for the Vertical scrolling function. Sets the line address of display RAM to determine the starting Line. The RAM display data is displayed at the top row of LCD panel.

D4	D3	D2	D1	D0	Line address	
0	0	0	0	0	1 (POR)	
0	0	0	0	1	2	
0	0	0	1	0	3	
0	0	0	1	1	4	
0	0	1	0	0	5	
:	:	:				T TT
1		0	1		28	
1	1		0	0	29	
1		1	0		30	
1	1			0	31	Et (D) and
1	A STOCKARD	1	1	1	32	

20. Graphic Duty Set: (Double Bytes Command)

This command is to set Graphic duty (Graphic Mode Only).

Graphic Duty Set: (70H)

RS	$\overline{WR}(R/\overline{W})$	D7	D6	D5	D4	D3	D2	D1	D0		
0	0	0	1	1	1	0	0	0	0		
Graphic Duty Set:											
RS	$\overline{WR}(R/\overline{W})$	D7	D6	D5	D4	D3	D2	D1	D0		
0	0	0	0	0	0	Graphic Duty					

Graphic Duty Select Instruction (Graphic Mode Only). This instruction controls the COM duty selection.

SH1111 support 9 duty types in Graphic mode. Each of these modes will control the number of multi COM drive. Please refer the table as bellow.

D[3:0]	Duty	Function
0	1/1	All com always on
1	1/2	The Grouping is COM1~16 and COM17~32
2	1/3	The Grouping is COM1~10, COM11~20 and COM21~32
3	1/4	The Grouping is COM1~8, COM9~16, COM17~24 and COM25~32
4	1/5	The Grouping is COM1~6, COM7~12, COM13~18, COM19~24 and COM25~32
5	1/6	The Grouping is COM1~5, COM6~10, COM11~15, COM16~20, COM21~25 and COM26~32
6	1/7	The Grouping is COM1~4, COM5~8, COM9~12, COM13~16, COM17~20, Com21~24 and COM25~32
7	1/8	The Grouping is COM1~4, COM5~8, COM9~12, COM13~16, COM17~20, COM21~24, COM25~28 and COM29~32
8	1/16	The Grouping is COM1~2, COM3~4, COM5~6, COM7~8, COM9~10, COM11~12, COM13~14, COM15~16, COM17~COM18, COM19~COM20, COM21~COM22, COM23~COM24, COM25~COM26, COM27~COM28, COM29~COM30 and COM31~COM32
9	1/32	Normal display (POR)
10~15	1/32	Normal display

21. Font Table & Cursor Blinking Duty Control Set: (Double Bytes Command)

This command is used to control the font table and cursor blinking duty.

■ Font Table & Cursor Blinking Duty Control Register: (80H)

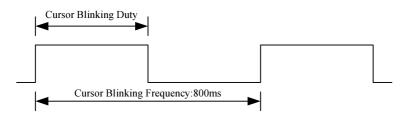
When this command is input, the font table & cursor blinking control register command becomes enabled. Once the font table & cursor blinking control mode has been set, no other command except for the font table control & cursor blinking register command can be used. Once the font table & cursor blinking data set command has been used to set data into the register, then the font table & cursor blinking control mode is released.

RS	$\overline{WR}(R/\overline{W})$	D7	D6	D5	D4	D3	D2	D1	D0
0	0	1	0	0	0	0	0	0	0

Font Table Enable & Font Table Selection & Cursor Blinking Duty Set:

RS	$\overline{WR}(R/\overline{W})$	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	BD2	BD1	BD0	0	FTE	FTS1	FTS0

FTE: Software Font Table Set Enable Bit.


When FTE = 0, software font table set function disable. The font table is selected by pad option FT[1:0]. (POR) When FTE = 1, software font table set function enable. The font table is selected by register option FTS[1:0]. At the same time, the font select by pad option FT[1:0] is invalid.

F	TS [1:0]: S	oftware Fo	ont Table Selection Control Bit.
	FTS1	FT <mark>S</mark> 0	Font Table
	0	0	ENGLISH_JAPANESE CHARACTER FONT TABLE(POR)
	0	1	WESTERN EUROPEAN CHARACTER FONT TABLE-I
	1	0	ENGLISH_RUSSIAN CHARACTER FONT TABLE
	1	1	WESTERN EUROPEAN CHARACTER FONT TABLE-II

BD[2:0]: Cursor Blinking Duty Selection.

These three bits are used to select one Blinking duty out of the four for further process.

D2	D1	D0	Cursor Blinking Duty
0	0	0	400ms
0	0	1	350ms
0	1	0	300ms(POR)
0	1	1	250ms
1	0	0	200ms
1	0	1	150ms
1	1	0	100ms
1	1	1	50ms

21. SH1111 ID Read:

This instruction is used to read the SH1111 ID.

RS	\overline{WR} (R/ \overline{W})	D7	D6	D5	D4	D3	D2	D1	D0
0	1	0	ON/OFF			11	D		

ON/OFF: Indicates whether the display is on or off. When it goes low, the display turns on. When it goes high, the display turns off. This is the opposite of Display ON/OFF command.

ID: These bits contain the information of the chip. They output bits 010001(it means 11H).

Command Table 1

0 and 1					Co	de					Eurotion		
Command	RS	\overline{WR}	D7	D6	D5	D4	D3	D2	D1	D0	Function		
1. Display Clear	0	0	0	0	0	0	0	0	0	1	Clear entire display area. (POR = 01H), ▲		
2. Display/ Cursor Home	0	0	0	0	0	0	0	0	1	*	Counter with DDRAM address 00H. (POR = 10H), ▲●		
3. Entry Mode Set	0	0	0	0	0	0	0	1	I/D	s	Specify direction of cursor movement and display shift mode. This operation takes place after each data transfer (read/write). (POR = 06H), ▲		
4. Display ON/OFF	0	0	0	0	0	0	1		C ▲	B ▲	Specify activation of display (D) cursor and blinking of character at cursor position (B). (POR = 08H),		
5. Display/Cursor Shift	0	0	0	0	0	1	S/C	R/L	*	*	Shift display or move cursor.		
6. Function Set	0	0	0	0	1	DL	N	F	*	*	Set number of display line (N), and character font (F). (POR = 30H), ▲		
7. CGRAM Address Set (GC=0, Character Mode Only)	0	0	0	1	P		AC	G			Load the address counter with a CG RAM address. Subsequent data access is for CG RAM data. (POR = 00H), ▲		
or Page Addres <mark>s Set</mark> (GC=1, Graphic Mode Only)	0	0	0	1	0	0	0	0	PAG	[1:0]	Set Page Address of GDDRAM. (POR = 00H), ●		
8. DD RAM Address Set (GC=0, Character Mode Only)	0	0	1			A	DD[6:	:0]			Load the address counter with a DDRAM address. Subsequent data access is for DD RAM data. (POR = 00H), ▲		
or Column Address Set (GC=1, Graphic Mode Only)	0	0	1		CAD[6:0]						Set Column Address of GDDRAM. (POR = 00H), ●		
9. Busy Flag & Address Counter Read	0	1	BF	AC6	AC5	AC4	AC3	AC2	AC1	AC0	Read Busy Flag (BF) and Address Counter (POR = 00H), ▲●		
10. CG RAM/ DD RAM/ GDDRAM Data Write	1	0		Write Dada						<u> </u>	Write data to CG RAM or DD RAM or GDDRAM. (POR = 00H), ▲●		
11. CG RAM/ DD RAM/ GDDRAM Data Read	1	1				Read	Data	a			Read data from CG RAM or DD RAM or GDDRAM. (POR = 00H), \blacktriangle		

Entry or Exit Extend Command Table2 Sequence:

12. Enter Extend Command Table2	0	0	1	1	1	0	1	1	1	1	Enter extend Command Table2 mode. (POR = EFH), ▲●
	0	0	1	1	1	1	1	0	1	0	Entry Sequence (POR = FAH), ▲●
13. Exit Extend Command Table2	0	0	1	1	1	1	1	1	1	0	Exit from extend Command Table2. (POR = FEH), $\blacktriangle \oplus$
	0	0	1	1	1	0	1	0	1	1	Exit Sequence (POR = EBH), ▲●

Command Table 2 (Continued)

Command					Co	de					Function	
Command	RS	\overline{WR}	D7	D6	D5	D4	D3	D2	D1	D0	Function	
14. Divide Ratio/Oscillator Frequency Data Set	0	0	0	0	0	1	0	0	0	0	Double Byte command: Set the frequency of the internal display	
			Oscillator Frequency Divide Ratio						Rati	clocks. (POR = 51H), ▲●		
15. Dis-charge /Pre-charge Period Mode Set	0	0				0	Double Byte command: Set the duration of the Dis-charge and					
			Dis-charge Period Pre-charge Period						ge Pe	eriod	Pre-charge period. (PDCVS = 0, POR = 22H; PDCVS = 1,POR = FFH), ▲●	
16. VCOM Deselect Level Data Set	0	0	0	0	1	1	0	0	0	0	Double Byte command: Set the Common pad output voltage level	
				VCOM							at deselect stage. (PDCVS = 0, POR = 35H; PDCVS = 1, POR = 40H), ▲●	
17. Segment Contrast Out Level	0	0	0	1	0	0	0	0	0	0	Double Byte command: Set Segment Contrast out level	
	0	0	CT(=BVR)								(PDCVS=0, POR = 80H; PDCVS=1, POR = FFH), ▲●	
18. VPP & Com/Segment Direction	0	9	0	1	0	-1	0	0	0	0	Double Byte command:	
Set	0	0	0	0	CM S	SHL	0	DCS	VPP	[1:0]	(POR = 03H); ▲●	
19. Graphic Vertica	0	0	0		4	-	-	0	0	0	Double Byte command: Set Graphic Vertical scrolling.	
	0	0	0	0	0	Grap	hic V	'ertica	al scr	olling	(POR = 00H), ●	
20. Graphic duty set	0	0	0	1	1	1	0	0	0	0	Double Byte command: Set Graphic duty.	
	0	0	0	0	0	0	Ģ	Graph	ic du	ty	(POR = 09H), ●	
21. Font Table & Cursor Blinking Duty Control	0	0	1	0	0	0	0	0	0	0	Double Byte command:	
Set	0	0	0	В	BD[2:0]		0	FTE	TE FTS[1:0]		(POR = 20H), ▲	
22. Read SH1111 ID	0	1	0	ON/ OFF			I	D			Return ID : 010001 (11H), ▲●	

Note:

1. ▲ = Character Mode Effective, ● = Graphic Mode Effective

2. Do not use any others command, otherwise it will cause system malfunction.

Operation Example

1. 8-bit Operation and 8-Digit 1-line Display (Using Internal Reset)

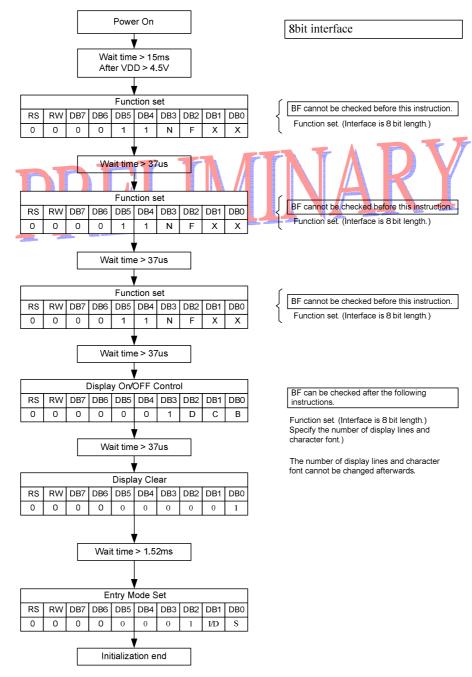
No.	Instruction	Display	Operation
1	Power On. (SH1111 starts initializing)		Power On Reset. No Display.
2	Function Set. RS RW DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 1 1 0 0 * *		Set to 8-bit operation and select 1-line display line and character font.
3	Display On/Off Control 0 0 0 0 1 1 1 0	_	Display On. Cursor appear.
4	Entry Mode Set	_	Increase address by one. It will shift the cursor to the right when writing to the DDRAM / CGRAM. Now the display has no shift.
5	Write data to CGRAM / DDRAM. 1 0 1 0 1 1 1 1	W_	Write "W". The cursor is increased by one and shift to the right.
6	Write data to CGRAM / DDRAM. 1 0 1 0 0 1 0 1	WE_	Write "E". The cursor is increased by one and shift to the right.
7			
8	Write data to CGRAM / DDRAM. 1 0 1 0 0 1 0 1	WELCOME_	Write "E". The cursor is increased by one and shift to the right.
9	Entry Mode Set.		Set mode for display shift when writing.
10	Write data to CGRAM / DDRAM. 1 0 0 1 0 </td <td></td> <td>Write " " (Space) The cursor is increased by one and shift to the right.</td>		Write " " (Space) The cursor is increased by one and shift to the right.
11	Urite data to CGRAM / DDRAM. 1 0 1 0 0 1 1	LCOME C_	Write "C" The cursor is increased by one and shift to the right.
12			
13	Write data to CGRAM / DDRAM. 1 0 1 0 0 1 1	COMPAMY_	Write "Y" The cursor is increased by one and shift to the right.
14	Cursor or display shift. 0 0 0 1 0 * *	COMPAM <u>Y</u>	Only shift the cursor's position to the left (Y).
15	Cursor or display shift. 0 0 0 0 1 0 * *	COMPA <u>M</u> Y	Only shift the cursor's position to the left (M).
16	Write data to CGRAM / DDRAM. 0 0 0 1 0 * *	OMPAN <u>Y</u>	Write "N" The display moves to the left.
17	Cursor or display shift. 0 0 0 0 1 1 * *	COMPANY_	Shift the display and the cursor's position to the right.
18	Cursor or display shift. 0 0 0 0 1 1 * *	OMPANY_	Shift the display and the cursor's position to the right.
19	Write data to CGRAM / DDRAM. 0 0 0 0 1 0 * *	COMPANY _	Write " "(Space) The cursor is increased by one and shift to the right.
20			
21	Return home. 0 0 0 0 0 1 0	WELCOME_	Both the display and the cursor return to the original position (address 0).

2. 4-bit Operation and 8-Digit 1-line Display (Using Internal Reset)

No.	Instruction	Display	Operation
1	Power On. (SH1111 starts initializing)		Power On Reset. No Display.
2	Function Set. RS R/W DB7 DB6 DB5 DB4 0 0 0 1 0		Set to 4-bit operation.
3	0 0 0 0 0 0 0 0 0 * *		Set to 4-bit operation and select 1-line display and character font.
4	0 0 0 0 0 0 0 0 1 1 1 0	_	Display On. Cursor appears.
5	0 0 0 0 0 0 0 0 1 1 0		Increase address by one. It will shift the cursor to the right when writing to the DDRAM / CGRAM. Now the display has no shift.
6	1 0 0 1 0 1 1 0 0 1 1 1		Write "W". The cursor is increased by one and shift to the right.

3. 8-bit Operation and 8-Digit 2-line Display (Using Internal Reset)

No.	Instruction	Display	Operation
1	Power On. (SH1111 starts initializing)		Power On Reset. No Display.
2	Function Set. RS R/W DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0 0 0 0 0 1 1 1 0 * *		Set to 8-bit operation and select 2-line display line and 5×8 dot character font.
3	Display On/Off Control 0 0 0 0 1 1 1 0	-	Display On. Cursor appear.
4	Entry Mode Set		Increase address by one. It will shift the cursor to the right when writing to the DDRAM / CGRAM. Now the display has no shift.
5	Write data to CGRAM / DDRAM. 1 0 1 0 1 1 1 1	W_	Write "W". The cursor is increased by one and shift to the right.
6			
7	Write data to CGRAM / DDRAM. 1 0 1 0 0 1 0 1	WELCOME_	Write "E". The cursor is increased by one and shift to the right.
8	Set DDRAM address. 0 0 1 0 0 0 0 0 0	WELCOME	It sets the DDRAM's address. The cursor is moved to the beginning position of the 2 nd line.
9	Write data to CGRAM / DDRAM. 1 0 1 0 1 0	WELCOME T_/	Write "T". The cursor is increased by one and shift to the right.
10	allitins allitics links and an and		
11	Write data to CGRAM / DDRAM. 1 0 1 0 1 0 0	WELCOME TO PART_	Write "T" The cursor is increased by one and shift to the right.
12	Entry Mode Set 0 0 0 0 0 1 1 0	WELCOME TO PARTY_	When writing, it sets mode for the display shift.
13	Write data to CGRAM / DDRAM. 1 0 0 1 0 0 1	ELCOME O PARTY_	Write "Y". The cursor is increased by one and shift to the right.
14			
15	Return home 0 0 0 0 0 1 0	WELCOME TO PARTY	Both the display and the cursor return to the original position (address 0).

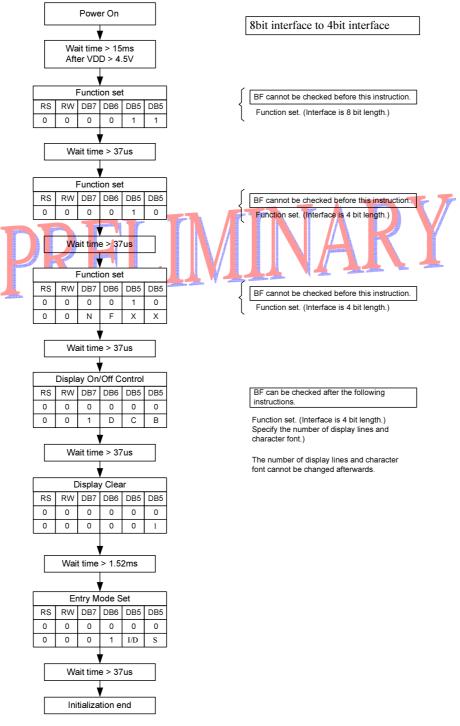


Power On/Off Sequence

1.8 bit interface: When user set IM[2:0] the following combinations.

IM2	IM1	IM0	MPU Interface
0	0	0	8-bit 6800
0	0	1	8-bit 8080
0	1	0	4-wire SPI
0	1	1	IIC
1	1	0	3-wire SPI
1	1	1	IIC

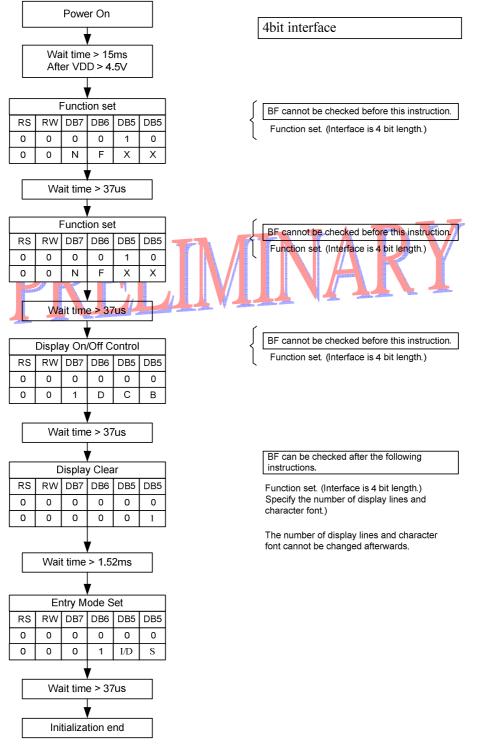
After power on, SH1111 starts the internal auto-reset circuit and executes the initial instructions. The initial procedures are shown as follows.



2. 8 bit interface to 4bit interface: when user set IM[2:0]=000 to select 8bit 6800 interface, user can set command6 "NL=0" to select 4bit 6800 interface (when user set IM[2:0]=001 to select 8bit 8080 interface, user can set command6 "NL=0" to select 4bit 8080 interface).

IM2	IM1	IM0	MPU Interface
0	0	0	8-bit 6800
0	0	1	8-bit 8080

After power on, SH1111 starts the internal auto-reset circuit and executes the initial instructions. The initial procedures are shown as follows.



3. 4bit interface: when user set IM[2:0]=100 to select 4bit 6800 interface or set IM[2:0]=101 to select 4bit 8080 interface.

IM2	IM1	IM0	MPU Interface
1	0	0	4-bit 6800
1	0	1	4-bit 8080

After power on, SH1111 starts the internal auto-reset circuit and executes the initial instructions. The initial procedures are shown as follows.

Absolute Maximum Rating*

DC Supply Voltage (VDD1)0.3V to +5.6V
DC Supply Voltage (VDD2)0.3V to +5.6V
DC Supply Voltage (VPP)0.3V to +14.5V
Input Voltage0.3V to VDD1 + 0.3V
Operating Ambient Temperature40°C to +85°C
Storage Temperature55°C to +125°C

*Comments

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to this device. These are stress ratings only. Functional operation of this device under these or any other conditions above those indicated in the operational sections of this specification is not implied or intended. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

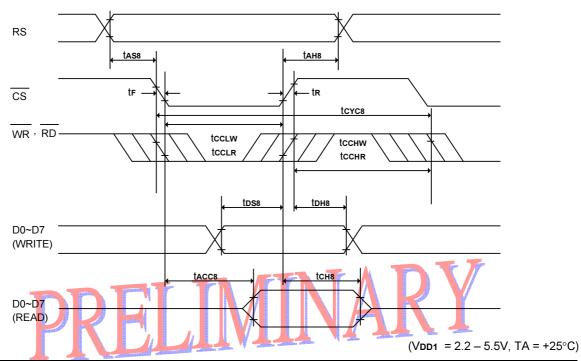
Electrical Characteristics

DC Characteristics (GND = 0V, VDD1 = 3.5V - 5.5V, VDD2 = 2.7V - 5.5V, TA = $+25^{\circ}C$, unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
Vdd1	Power supply of I/O	3.5	-	5.5	V	For 5V system
Vdd2	Power supply of logic device	2.7	-	5.5	V	
Vpp	OLED Operating voltage	5.0	-	14.0	V	
IDD1	Dynamic current Consumption 1 in Vpp1		110	160	μA	V _{DD1} = V _{DD2} =5V, I _{REF} =18.75μA,BVR = 1111111(FFH), Internal charge pump OFF(VPPS=0), Display ON, display data = All ON, No panel attached.
IDD2	Dynamic current Consumption 2 in V _{DD1} & V _{DD2}		3.5	4	mĄ	V _{DD1} = V _{DD2} =5V, I _{REF} =18.75μA, BVR = 1111111(FFH), Internal charge pump ON(VPPS=1), Display ON, Display data = All ON, No panel attached.
PP	OLED dynamic current consumption in V _{PP}	-	1.8	2.54	mA	$V_{DD1} = V_{DD2} = 5v$, VPP =12V(external, VPPS=0), BVR = 11111111(FFH), Display ON, Display data = All ON, No panel attached.
İsp	Sleep mode current Consumption in VDD1 & VDD2	-	-	10	μA	During sleep, Ta = +25°C, Vdd1 = 5V, Vdd2 = 5V, (Internal VPP,VPPS=1)
	Sleep mode current Consumption in V PP	-	-	10	μA	During sleep, TA = +25°C, VPP = 12v (external, VPPS=0)
ISEG	Segment output current		-600	ł	μA	V _{DD1} = 5v, V _{PP} = 12v, R _{LOAD} = 20kΩ, Display ON. BVR=11111111(FFH)
∆lseg1	G1 Segment output current uniformity		-	±5	%	$\Delta Iseg1 = (Iseg - Imid)/Imid X 100%$ Imid = (Imax + Imin)/2 I _{SEG} [1:100] at BVR=11111111(FFH)
Δ lseg2	Adjacent segment output Current uniformity		-	±5	%	∆Iseg2=(Iseg [N]–Iseg[N+1])/(Iseg[N]+Iseg[N+1])X 100% I _{SEG} [1:100] at BVR=11111111(FFH)

SH1111

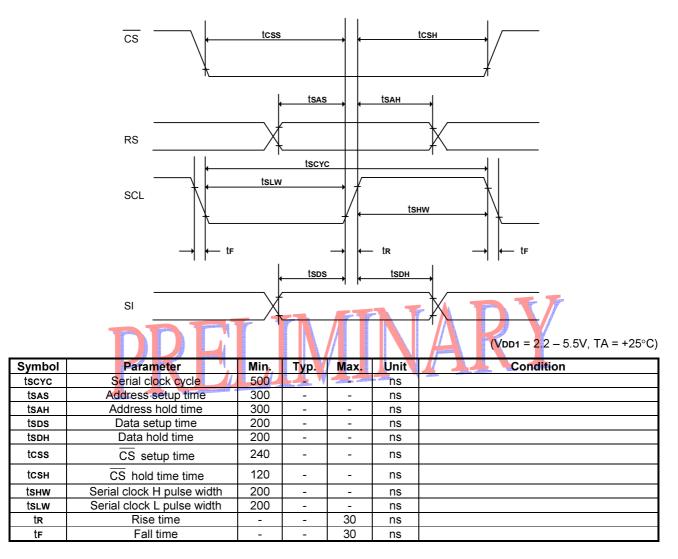
DC Characteristics (Continued)


Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition		
VIHC	High-level input voltage	0.7 X V DD1	-	VDD1	V	RS, D0 – D7, \overline{RD} (E), \overline{WR} (R/ \overline{W}), \overline{CS} ,		
VILC	Low-level input voltage	GND	-	0.3XV dd1	V	CLS, CL, IM0, IM1, IM2, VDD1_OPT and RES		
Vонс	High-level output voltage	0.7 X V DD1	-	Vdd1	V	Іон = -0.5mA (D0 – D7, and CL)		
Volc	Low –level output voltage	GND	-	0.3XV dd1	V	Io∟ = 0.5mA (D0 – D7, and CL)		
	SDA low –level output			0.3 X Vdd1	v	VDD1<2V IoL=2mA (SDA)		
Volcs	voltage	GND	-	0.4	v	VDD1≥2V IoL=3mA (SDA)		
ILI	Input leakage current	-1.0	_	1.0	μA	$ \begin{array}{l} V_{\text{IN}} = V_{\text{DD1}} \text{ or } \text{GND} (\text{RS}, \ \overline{\text{RD}} (\text{E}), \ \overline{\text{WR}} (\text{R}/\overline{\text{W}}), \\ \overline{\text{CS}}, \ \text{CLS}, \ \text{IM0}, \ \text{IM1}, \ \text{IM2}, \ \text{VDD1} \ \text{OPT} \ \text{and} \ \overline{\text{RES}}) \end{array} $		
161		1.0		1.0	μ			
lнz	HZ leakage current	-1.0	-	1.0	μA	When the D0 – D7, and CL are in high impedance		
fosc	Oscillation frequency	-	400	-	KHz	T a = +25°C		
ffrm	Frame frequency for 16 Commons	-	116	-	Hz	When f osc = 400KHz, Divide ratio = 2, Common width = 54 DCLKs (Discharge = 2 DCLKs, Precharge = 2 DCLKs)		

AC Characteristics

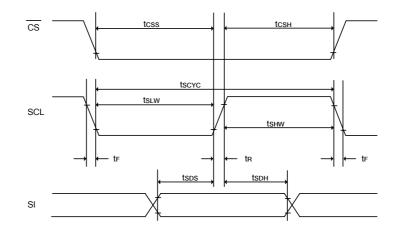
(1) System buses Read/Write characteristics 1 (For the 4/8 bit 8080 Series Interface MPU)

Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tCYC8	System cycle time	500	-	-	ns	
tas8	Address setup time	0	-	-	ns	
tah8	Address hold time	0	-	-	ns	
tDS8	Data setup time	66	-	-	ns	
tdh8	Data hold time	25	-	-	ns	
tCH8	Output disable time	16	-	110	ns	CL = 100pF
tacc8	RD access time	-	-	230	ns	CL = 100pF
tcc∟w	Control L pulse width (WR)	166	-	-	ns	
tCCLR	Control L pulse width (RD)	200	-	-	ns	
tсснw	Control H pulse width (WR)	166	-	-	ns	
tCCHR	Control H pulse width (RD)	166	-	-	ns	
tR	Rise time	-	-	25	ns	
tF	Fall time	-	-	25	ns	



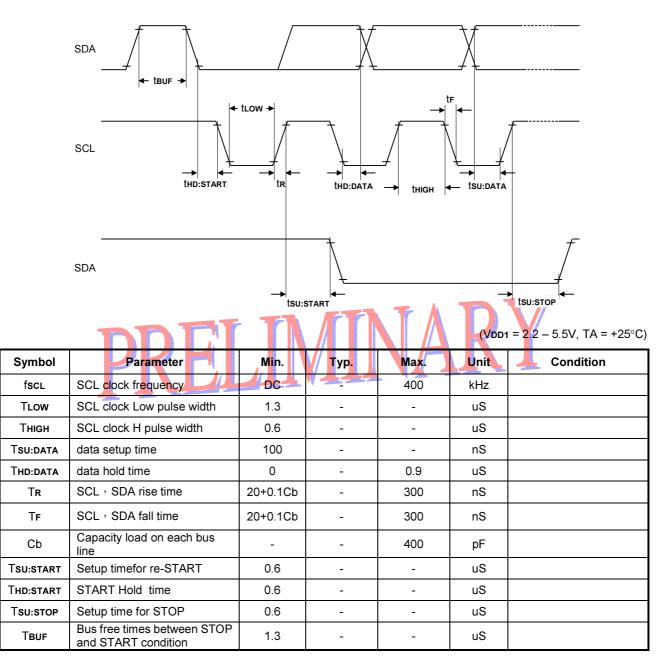
$\begin{array}{c} RS \\ R/W \\ \hline CS \\ \hline CS \\ \hline tF \\ \hline tewhw tewhw tewhr \\ \hline tewhw tewhr \\ \hline tewhw tewhr \\ \hline tewhw tewhr \\ \hline tewhw tewhr \\ \hline to Se \\ \hline tewh \\ \hline to Se \\ \hline tewh \\ \hline tewh \\ \hline to Se \\ \hline tewh \\ tewh \\ \hline tewh \\ tewh \\ tewh \\ \hline tewh \\ $									
	D0~D7 (READ)					ARY			
						$(VDD1 = 2.2 - 5.5V, TA = +25^{\circ}C)$			
Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition			
Symbol tcyc6	Parameter System cycle time	Min. 500	Typ.	Max.	Unit ns	cilina cittotee meete			
						cilina cittotee meete			
tCYC6	System cycle time	500	-	-	ns	cilina cittotee meete			
tcyc6 tas6	System cycle time Address setup time	500 0	-	-	ns ns	cilina cittotee meete			
tcyc6 tas6 tah6	System cycle time Address setup time Address hold time	500 0 0	-		ns ns ns	cilina cittotee meete			
tcyc6 tas6 tah6 tds6	System cycle time Address setup time Address hold time Data setup time	500 0 0 66	-	- - - -	ns ns ns ns	cilina cittotee meete			
tcyce tase tahe tdse tdbe	System cycle time Address setup time Address hold time Data setup time Data hold time	500 0 66 25			ns ns ns ns ns	Condition			
tcyc6 tAS6 tAH6 tDS6 tDH6 tOH6	System cycle time Address setup time Address hold time Data setup time Data hold time Output disable time	500 0 66 25 16	- - - - -	- - - - 140	ns ns ns ns ns ns	Condition CL = 100pF			
tcyce tase tahe tDse tDhe tohe tacce	System cycle time Address setup time Address hold time Data setup time Data hold time Output disable time Access time	500 0 66 25 16 -	- - - - - - -	- - - - 140 280	ns ns ns ns ns ns ns	Condition CL = 100pF			
tcyc6 tAS6 tAH6 tDS6 tDH6 tOH6 tACC6 tEWHW	System cycle time Address setup time Address hold time Data setup time Data hold time Output disable time Access time Enable H pulse width (Write)	500 0 66 25 16 - 166	- - - - - - - - -	- - - - 140 280 -	ns ns ns ns ns ns ns ns	Condition CL = 100pF			
tcyc6 tas6 tah6 tDs6 tDh6 toh6 tacc6 tewhw tewhR	System cycle time Address setup time Address hold time Data setup time Data hold time Output disable time Access time Enable H pulse width (Write) Enable H pulse width (Read)	500 0 66 25 16 - 166 200	- - - - - - - - - - -	- - - - 140 280 - -	ns ns ns ns ns ns ns ns ns	Condition CL = 100pF			
tcyc6 tAS6 tAH6 tDS6 tDH6 tOH6 tACC6 tEWHW tEWHR tEWLW	System cycle time Address setup time Address hold time Data setup time Data hold time Output disable time Access time Enable H pulse width (Write) Enable H pulse width (Read) Enable L pulse width (Write)	500 0 66 25 16 - 166 200 166	- - - - - - - - - - - -	- - - - 140 280 - - -	ns ns ns ns ns ns ns ns ns ns ns	Condition CL = 100pF			

(2)System buses System buses Read/Write Characteristics 2 (For the 4/8 bit 6800 Series Interface MPU)



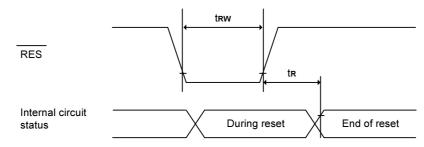
(3)System buses Write characteristics 3 (For 4 wire SPI)

(4)System buses Write characteristics 4(For 3 wire SPI)



(VDD1 = 2.2 - 3.5V, TA = +25°C)

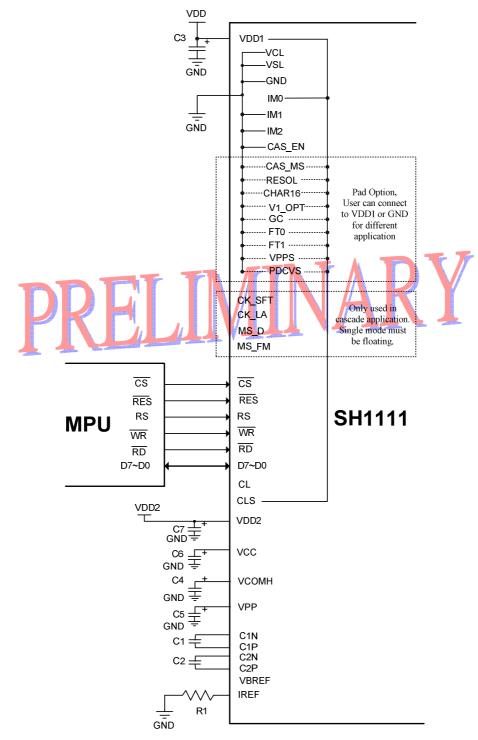
Symbol	Parameter	Min.	Typ.	Max.	Unit	Condition
tscyc	Serial clock cycle	500		-	ns	
tsps	Data setup time	200		/ -	ns	
tsdh	Data hold time	200		/ -	ns	
tcss	CS setup time	240			ns	
tcsн	CS hold time time	120	-	-	ns	
tsнw	Serial clock H pulse width	200	-	-	ns	
ts∟w	Serial clock L pulse width	200	-	I	ns	
tR	Rise time	-	-	30	ns	
tF	Fall time	-	-	30	ns	


.

(6)Reset Timing

 $(VDD1 = 2.2 - 5.5V, Ta = +25^{\circ}C)$

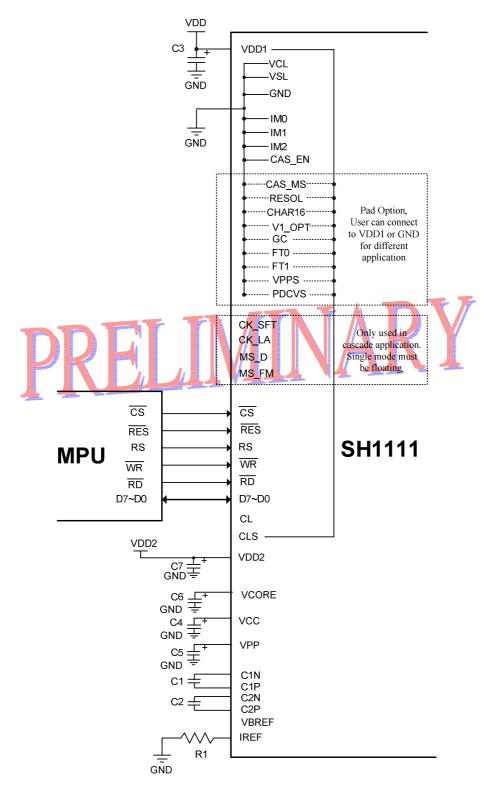
Symbol	Parameter	Min.	Тур.	Max.	Unit	Condition
tR	Reset time	-	-	2.0	μs	
trw	Reset low pulse width	10.0	-	-	μS	



Application Circuit (for reference only)

Reference Connection to MPU:

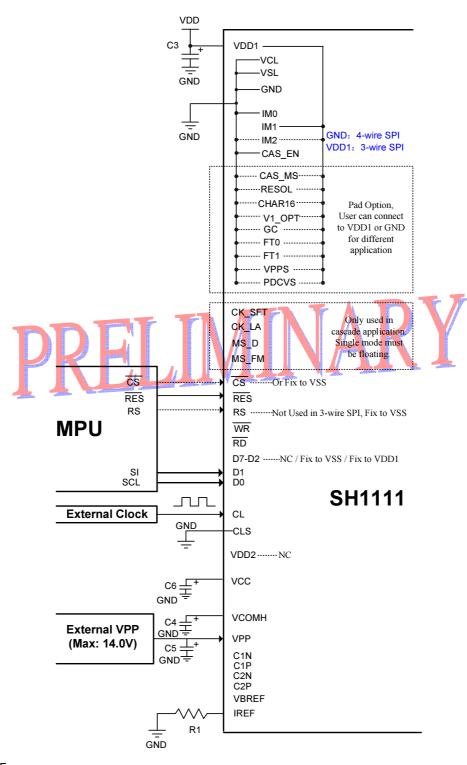
1. 8-bit 8080 Series Interface: (Internal Oscillator, Build-in DC-DC)



Note:

C3 – C5, C6, C7: 4.7 μ F. C1, C2: 1 μ F R1: about 480k(I_{SEG}=300uA), R1 = (Voltage at IREF – GND)/IREF

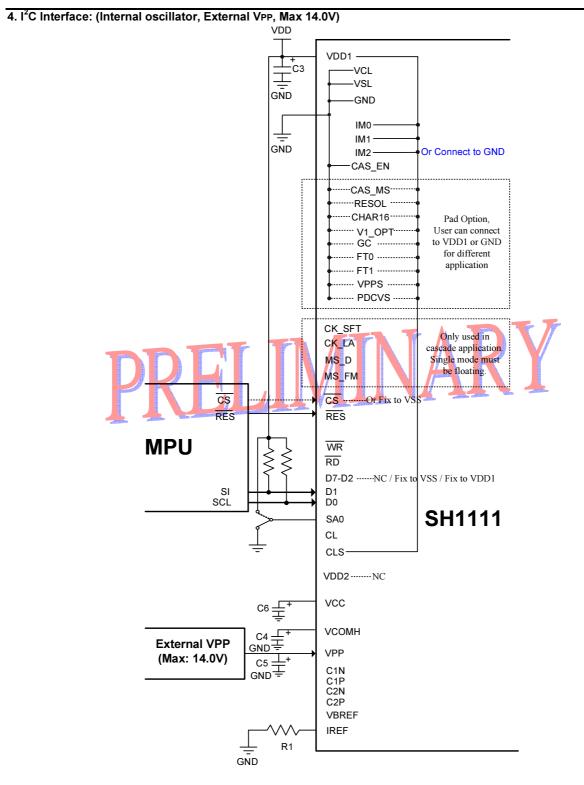
2. 8-bit 6800 Series Interface: (Internal Oscillator, Built-in DC-DC)



Note:

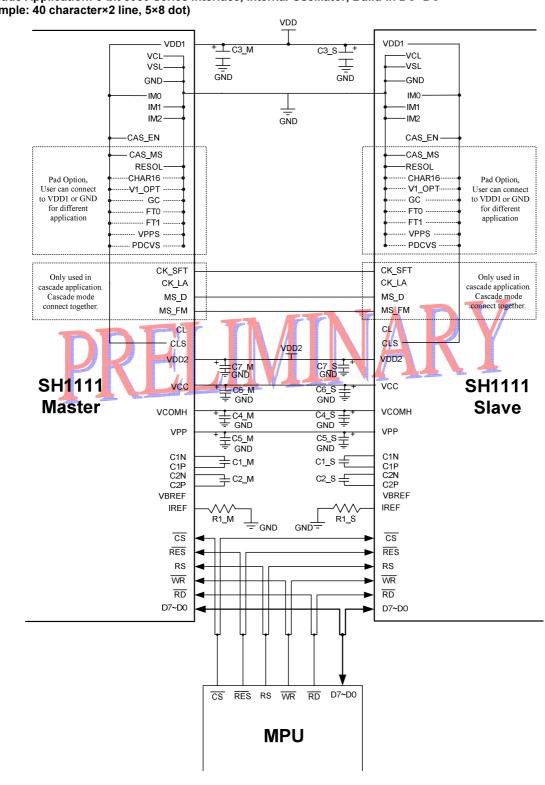
C3 – C5, C6, C7: 4.7 $\mu F.\,$ C1, C2 : $1\mu F$ R1: about 480k(I_{SEG}=300uA), R1 = (Voltage at IREF – GND)/IREF

3. Serial Interface (3-wire or 4-wire SPI): (External Oscillator, External VPP, Max 14.0V)


C3 – C5, C6: 4.7 μ F R1: about 480k(I_{SEG}=300uA), R1 = (Voltage at IREF – GND)/IREF

 \overline{WR} and \overline{RD} are not used in SPI mode, should fix to GND or VDD1.

 $\overline{\text{CS}}$ can fix to GND in SPI mode.


SH1111

 $\begin{array}{l} \textbf{C3-C5, C6: 4.7 } \mu \textbf{F} \\ \textbf{R1: about 480k(I_{SEG}=300uA), R1 = (Voltage at IREF - GND)/IREF} \\ \hline \textbf{WR} \\ \textbf{and} \\ \hline \textbf{RD} \\ \textbf{are not used in IIC mode, should fix to GND or VDD1.} \end{array}$

 $\overline{\text{CS}}$ can fix to GND in IIC mode.

5. Cascade Application: 8-bit 8080 Series Interface, Internal Oscillator, Build-in DC- DC (Example: 40 character×2 line, 5×8 dot)

Note: M = Master, S = Slave. C3 – C5, C6, C7: 4.7µF, C1, C2: 1µF

R1: about 480k(I_{SEG}=300uA) , R1 = (Voltage at IREF – GND)/IREF

Ordering Information

Part No.	Package
SH1111G-BD001	Gold bump on chip tray

SH1111

Spec Revision History

Version	Content	Date
V0.0	Original	2014.12.10
V0.1	 Modify "VSL", "CK_LA" Pad definition. (Page3) Modify COM Pad pitch to 46um. (Page7) Modify Pad location. (Page8) Modify the 4bit 6800-series Parallel Interface timing. (Page10) Added description of 1601 and 1604 note. (Page17) Added DDRAM Address description of "5×8 dot Font" or "5×10 dot Font". (Page 17~20) Modify Master and Slave definition. (Page35,36,39) Modify "4bit interface" and added "8bit interface to 4bit interface". (Page70~71) Modify DC Characteristics.(Page72) 	2015.02.06
V0.2	 Modify GND Pad number. (Page3) Modify Ordering Information. (Page85) Modify "IREF is reference current equals to 18.75μA; Scale factor = 16". (Page58) 	2015.03.25
V0.2_1	1. Modify DC Character of IDD2 Value. (Page72) 2. Modify Iref Res R1 Value: 480K. (Page80~84)	2015.04.14
	PKELIWINAN	